Care este suma unei progresii aritmetice. Progresie aritmetică. Exemplu de aplicare practică a progresiei aritmetice

Suma unei progresii aritmetice.

Suma unei progresii aritmetice este un lucru simplu. Atât în ​​sens, cât și în formulă. Dar există tot felul de sarcini pe această temă. De la elementar la destul de solid.

În primul rând, să ne ocupăm de sensul și formula sumei. Și atunci vom decide. Pentru plăcerea ta.) Sensul sumei este la fel de simplu ca și joasă. Pentru a găsi suma unei progresii aritmetice, trebuie doar să adăugați cu atenție toți membrii acesteia. Dacă acești termeni sunt puțini, puteți adăuga fără formule. Dar dacă există mult, sau mult... adăugarea este enervantă.) În acest caz, formula salvează.

Formula sumei este simplă:

Să ne dăm seama ce fel de litere sunt incluse în formulă. Acest lucru se va clarifica foarte mult.

S n este suma unei progresii aritmetice. Rezultat adaos toate membri, cu primul pe ultimul. Este important. Adunați exact toate membri la rând, fără goluri și sărituri. Și, exact, pornind de la primul.În probleme precum găsirea sumei termenilor al treilea și al optulea sau a sumei termenilor cinci până la al douăzecilea, aplicarea directă a formulei va fi dezamăgitoare.)

a 1 - primul membru al progresiei. Totul este clar aici, e simplu primul numărul rândului.

un n- ultimul membru al progresiei. Ultimul număr al rândului. Nu este un nume foarte familiar, dar, atunci când este aplicat sumei, este foarte potrivit. Atunci vei vedea singur.

n este numărul ultimului membru. Este important să înțelegeți că în formulă acest număr coincide cu numărul de termeni adăugați.

Să definim conceptul ultimul membru un n. Întrebare de completare: ce fel de membru va ultimul, dacă este dat fără sfârşit progresie aritmetica?

Pentru un răspuns sigur, trebuie să înțelegeți semnificația elementară a unei progresii aritmetice și... citiți cu atenție tema!)

În sarcina de a găsi suma unei progresii aritmetice, ultimul termen apare întotdeauna (direct sau indirect), care ar trebui limitată.În caz contrar, o sumă finită, specifică pur si simplu nu exista. Pentru soluție, nu contează ce fel de progresie este dată: finită sau infinită. Nu contează cum este dat: printr-o serie de numere sau prin formula celui de-al n-lea membru.

Cel mai important este să înțelegeți că formula funcționează de la primul termen al progresiei până la termenul cu numărul n. De fapt, numele complet al formulei arată astfel: suma primilor n termeni ai unei progresii aritmetice. Numărul acestor primii membri, adică n, este determinată exclusiv de sarcină. În sarcină, toate aceste informații valoroase sunt adesea criptate, da ... Dar nimic, în exemplele de mai jos vom dezvălui aceste secrete.)

Exemple de sarcini pentru suma unei progresii aritmetice.

În primul rând, Informatii utile:

Principala dificultate în sarcinile pentru suma unei progresii aritmetice este determinarea corectă a elementelor formulei.

Autorii sarcinilor criptează aceste elemente cu o imaginație nemărginită.) Principalul lucru aici este să nu vă fie frică. Înțelegând esența elementelor, este suficient doar să le descifrem. Să aruncăm o privire la câteva exemple în detaliu. Să începem cu o sarcină bazată pe un GIA real.

1. Progresie aritmetică dat de condiţia: a n = 2n-3.5. Aflați suma primilor 10 termeni.

Bună treabă. Ușor.) Pentru a determina cantitatea conform formulei, ce trebuie să știm? Primul membru a 1, ultimul termen un n, da numarul ultimului termen n.

De unde să obțineți ultimul număr de membru n? Da, în același loc, în stare! Spune găsiți suma primii 10 membri. Ei bine, ce număr va fi ultimul, al zecelea membru?) Nu veți crede, numărul lui este al zecelea!) Prin urmare, în loc de un n vom înlocui în formulă un 10, dar în schimb n- zece. Din nou, numărul ultimului membru este același cu numărul membrilor.

Rămâne de stabilit a 1și un 10. Acest lucru este ușor de calculat prin formula celui de-al n-lea termen, care este dată în enunțul problemei. Nu știi cum să o faci? Vizitați lecția anterioară, fără aceasta - nimic.

a 1= 2 1 - 3,5 = -1,5

un 10\u003d 2 10 - 3,5 \u003d 16,5

S n = S 10.

Am aflat semnificația tuturor elementelor formulei pentru suma unei progresii aritmetice. Rămâne să le înlocuim și să numărăm:

Cam despre asta e. Raspuns: 75.

O altă sarcină bazată pe GIA. Puțin mai complicat:

2. Având în vedere o progresie aritmetică (a n), a cărei diferență este 3,7; a 1 \u003d 2.3. Aflați suma primilor 15 termeni.

Scriem imediat formula sumei:

Această formulă ne permite să găsim valoarea oricărui membru după numărul său. Căutăm o înlocuire simplă:

a 15 \u003d 2,3 + (15-1) 3,7 \u003d 54,1

Rămâne să înlocuiți toate elementele din formulă pentru suma unei progresii aritmetice și să calculați răspunsul:

Răspuns: 423.

Apropo, dacă în formula sumei în loc de un n doar înlocuiți formula celui de-al n-lea termen, obținem:

Dăm altele similare, obținem o nouă formulă pentru suma membrilor unei progresii aritmetice:

După cum puteți vedea, nu este nevoie al n-lea termen un n. În unele sarcini, această formulă ajută foarte mult, da... Vă puteți aminti această formulă. Și îl puteți retrage pur și simplu la momentul potrivit, ca aici. La urma urmei, formula pentru sumă și formula pentru al n-lea termen trebuie amintite în orice fel.)

Acum sarcina sub forma unei criptări scurte):

3. Aflați suma tuturor numerelor pozitive din două cifre care sunt multipli de trei.

Cum! Nici primul membru, nici ultimul, nicio progresie... Cum să trăiești!?

Va trebui să gândești cu capul și să scoți din condiție toate elementele sumei unei progresii aritmetice. Ce sunt numerele din două cifre - știm. Ele constau din două numere.) Ce număr de două cifre va primul? 10, probabil.) ultimul lucru număr de două cifre? 99, desigur! Cei din trei cifre îl vor urma...

Multipli de trei... Hm... Acestea sunt numere care sunt divizibile egal cu trei, aici! Zece nu este divizibil cu trei, 11 nu este divizibil... 12... este divizibil! Deci, ceva iese la iveală. Puteți deja să scrieți o serie în funcție de starea problemei:

12, 15, 18, 21, ... 96, 99.

Va fi această serie o progresie aritmetică? Desigur! Fiecare termen diferă de cel precedent strict cu trei. Dacă la termen se adaugă 2 sau 4, să zicem rezultatul, adică. un număr nou nu va mai fi împărțit la 3. Puteți determina imediat diferența progresiei aritmetice către grămada: d = 3. Util!)

Deci, putem nota în siguranță câțiva parametri de progresie:

Care va fi numărul n ultimul membru? Oricine crede că 99 se înșală fatal... Numerele - merg mereu la rând, iar membrii noștri sar peste primii trei. Nu se potrivesc.

Există două soluții aici. O modalitate este pentru cei super muncitori. Puteți picta progresia, întreaga serie de numere și puteți număra numărul de termeni cu degetul.) A doua cale este pentru cei gânditori. Trebuie să vă amintiți formula pentru al n-lea termen. Dacă formula se aplică problemei noastre, obținem că 99 este al treizecilea membru al progresiei. Acestea. n = 30.

Ne uităm la formula pentru suma unei progresii aritmetice:

Ne uităm și ne bucurăm.) Am scos tot ce era necesar pentru calcularea sumei din starea problemei:

a 1= 12.

un 30= 99.

S n = S 30.

Ceea ce rămâne este aritmetica elementară. Înlocuiți numerele din formulă și calculați:

Răspuns: 1665

Un alt tip de puzzle-uri populare:

4. Se dă o progresie aritmetică:

-21,5; -20; -18,5; -17; ...

Găsiți suma termenilor de la al douăzecilea la al treizeci și patrulea.

Ne uităm la formula sumei și... suntem supărați.) Formula, permiteți-mi să vă reamintesc, calculează suma din prima membru. Și în problemă trebuie să calculați suma din al XX-lea... Formula nu va funcționa.

Puteți, desigur, să pictați întreaga progresie la rând și să puneți membrii de la 20 la 34. Dar ... cumva se dovedește prostesc și pentru mult timp, nu?)

Există o soluție mai elegantă. Să împărțim seria noastră în două părți. Prima parte va de la primul termen până la al nouăsprezecelea. A doua parte - douăzeci până la treizeci şi patru. Este clar că dacă calculăm suma termenilor primei părți S 1-19, să-l adăugăm la suma membrilor din partea a doua S 20-34, obținem suma progresiei de la primul termen la al treizeci și patrulea S 1-34. Ca aceasta:

S 1-19 + S 20-34 = S 1-34

Aceasta arată că pentru a găsi suma S 20-34 se poate face prin simpla scădere

S 20-34 = S 1-34 - S 1-19

Sunt luate în considerare ambele sume din partea dreaptă din prima membru, adică formula sumei standard le este destul de aplicabilă. Începem?

Extragem parametrii de progresie din condiția sarcinii:

d = 1,5.

a 1= -21,5.

Pentru a calcula sumele primilor 19 și primilor 34 de termeni, vom avea nevoie de al 19-lea și al 34-lea termen. Le numărăm după formula celui de-al n-lea termen, ca în problema 2:

un 19\u003d -21,5 + (19-1) 1,5 \u003d 5,5

un 34\u003d -21,5 + (34-1) 1,5 \u003d 28

Nu a mai ramas nimic. Scădeți suma a 19 termeni din suma a 34 de termeni:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Răspuns: 262,5

O notă importantă! Există o caracteristică foarte utilă în rezolvarea acestei probleme. În loc de calcul direct de ce ai nevoie (S 20-34), am numărat ceea ce, s-ar părea, nu este necesar - S 1-19.Și atunci s-au hotărât S 20-34, eliminând ceea ce nu este necesar din rezultatul complet. O astfel de „făcătură cu urechile” salvează adesea în puzzle-uri rele.)

În această lecție, am examinat probleme pentru care este suficient să înțelegem sensul sumei unei progresii aritmetice. Ei bine, trebuie să știți câteva formule.)

sfaturi practice:

Când rezolvați orice problemă pentru suma unei progresii aritmetice, vă recomand să scrieți imediat cele două formule principale din acest subiect.

Formula celui de-al n-lea termen:

Aceste formule vă vor spune imediat ce să căutați, în ce direcție să gândiți pentru a rezolva problema. Ajută.

Și acum sarcinile pentru o soluție independentă.

5. Aflați suma tuturor numerelor de două cifre care nu sunt divizibile cu trei.

Cool?) Sugestia este ascunsă în nota la problema 4. Ei bine, problema 3 va ajuta.

6. Progresia aritmetică este dată de condiția: a 1 =-5,5; a n+1 = a n +0,5. Aflați suma primilor 24 de termeni.

Neobișnuit?) Aceasta este o formulă recurentă. Puteți citi despre asta în lecția anterioară. Nu ignora linkul, astfel de puzzle-uri se găsesc adesea în GIA.

7. Vasya a făcut economii pentru Sărbători. Cât de mult 4550 de ruble! Și am decis să-i ofer celei mai iubite persoane (mie) câteva zile de fericire). Trăiește frumos fără a te nega nimic. Cheltuiește 500 de ruble în prima zi și cheltuiește cu 50 de ruble mai mult în fiecare zi următoare decât în ​​ziua anterioară! Până se epuizează banii. Câte zile de fericire a avut Vasya?

Este dificil?) O formulă suplimentară din sarcina 2 va ajuta.

Răspunsuri (în dezordine): 7, 3240, 6.

Daca va place acest site...

Apropo, mai am câteva site-uri interesante pentru tine.)

Puteți exersa rezolvarea exemplelor și puteți afla nivelul dvs. Testare cu verificare instantanee. Învățarea - cu interes!)

vă puteți familiariza cu funcțiile și derivatele.


De exemplu, secvența \(2\); \(5\); \(opt\); \(unsprezece\); \(14\)... este o progresie aritmetică, deoarece fiecare element următor diferă de cel anterior cu trei (se poate obține de la precedentul prin adăugarea a trei):

În această progresie, diferența \(d\) este pozitivă (egală cu \(3\)) și, prin urmare, fiecare termen următor este mai mare decât cel anterior. Se numesc astfel de progresii crescând.

Totuși, \(d\) poate fi și un număr negativ. De exemplu, în progresie aritmetică \(16\); \(zece\); \(patru\); \(-2\); \(-8\)... diferența de progresie \(d\) este egală cu minus șase.

Și în acest caz, fiecare element următor va fi mai mic decât cel anterior. Aceste progresii se numesc in scadere.

Notarea progresiei aritmetice

Progresia este indicată de o literă latină mică.

Numerele care formează o progresie se numesc membrii(sau elemente).

Ele sunt notate cu aceeași literă ca și progresia aritmetică, dar cu un indice numeric egal cu numărul elementului în ordine.

De exemplu, progresia aritmetică \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) constă din elementele \(a_1=2\); \(a_2=5\); \(a_3=8\) și așa mai departe.

Cu alte cuvinte, pentru progresia \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Rezolvarea problemelor pe o progresie aritmetică

În principiu, informațiile de mai sus sunt deja suficiente pentru a rezolva aproape orice problemă pe o progresie aritmetică (inclusiv cele oferite la OGE).

Exemplu (OGE). Progresia aritmetică este dată de condițiile \(b_1=7; d=4\). Găsiți \(b_5\).
Soluţie:

Răspuns: \(b_5=23\)

Exemplu (OGE). Primii trei termeni ai unei progresii aritmetice sunt dați: \(62; 49; 36…\) Aflați valoarea primului termen negativ al acestei progresii..
Soluţie:

Ni se oferă primele elemente ale secvenței și știm că este o progresie aritmetică. Adică fiecare element diferă de cel vecin prin același număr. Aflați care dintre ele scăzând pe cel precedent din următorul element: \(d=49-62=-13\).

Acum ne putem restabili progresul la elementul dorit (primul negativ).

Gata. Puteți scrie un răspuns.

Răspuns: \(-3\)

Exemplu (OGE). Sunt date mai multe elemente succesive ale unei progresii aritmetice: \(...5; x; 10; 12,5...\) Aflați valoarea elementului notat cu litera \(x\).
Soluţie:


Pentru a găsi \(x\), trebuie să știm cât de mult diferă următorul element față de cel anterior, cu alte cuvinte, diferența de progresie. Să o găsim din două elemente învecinate cunoscute: \(d=12,5-10=2,5\).

Și acum găsim fără probleme ceea ce căutăm: \(x=5+2.5=7.5\).


Gata. Puteți scrie un răspuns.

Răspuns: \(7,5\).

Exemplu (OGE). Progresia aritmetica este data de urmatoarele conditii: \(a_1=-11\); \(a_(n+1)=a_n+5\) Aflați suma primilor șase termeni ai acestei progresii.
Soluţie:

Trebuie să găsim suma primilor șase termeni ai progresiei. Dar nu le cunoaștem semnificațiile, ni se dă doar primul element. Prin urmare, mai întâi calculăm valorile pe rând, folosindu-ne:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
Și după ce am calculat cele șase elemente de care avem nevoie, găsim suma lor.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Suma solicitată a fost găsită.

Răspuns: \(S_6=9\).

Exemplu (OGE). În progresie aritmetică \(a_(12)=23\); \(a_(16)=51\). Găsiți diferența acestei progresii.
Soluţie:

Răspuns: \(d=7\).

Formule importante de progresie aritmetică

După cum puteți vedea, multe probleme de progresie aritmetică pot fi rezolvate pur și simplu prin înțelegerea principalului lucru - că o progresie aritmetică este un lanț de numere și fiecare element următor din acest lanț se obține prin adăugarea aceluiași număr la cel precedent (diferența a progresiei).

Cu toate acestea, uneori există situații când este foarte incomod să rezolvi „pe frunte”. De exemplu, imaginați-vă că în primul exemplu, trebuie să găsim nu al cincilea element \(b_5\), ci al trei sute optzeci și șase \(b_(386)\). Ce este, \ (385 \) ori să adunăm patru? Sau imaginați-vă că, în penultimul exemplu, trebuie să găsiți suma primelor șaptezeci și trei de elemente. Numărarea este confuză...

Prin urmare, în astfel de cazuri, ei nu rezolvă „pe frunte”, ci folosesc formule speciale derivate pentru progresia aritmetică. Iar cele principale sunt formula pentru al n-lea termen al progresiei și formula pentru suma \(n\) a primilor termeni.

Formula pentru \(n\)-lea membru: \(a_n=a_1+(n-1)d\), unde \(a_1\) este primul membru al progresiei;
\(n\) – numărul elementului solicitat;
\(a_n\) este un membru al progresiei cu numărul \(n\).


Această formulă ne permite să găsim rapid cel puțin elementul trei sute, chiar milionul, cunoscând doar primul și diferența de progresie.

Exemplu. Progresia aritmetica este data de conditiile: \(b_1=-159\); \(d=8,2\). Găsiți \(b_(246)\).
Soluţie:

Răspuns: \(b_(246)=1850\).

Formula pentru suma primilor n termeni este: \(S_n=\frac(a_1+a_n)(2) \cdot n\), unde



\(a_n\) este ultimul termen însumat;


Exemplu (OGE). Progresia aritmetică este dată de condițiile \(a_n=3.4n-0.6\). Aflați suma primilor \(25\) termeni ai acestei progresii.
Soluţie:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Pentru a calcula suma primelor douăzeci și cinci de elemente, trebuie să cunoaștem valoarea primului și a douăzeci și cinci de termeni.
Progresia noastră este dată de formula celui de-al n-lea termen în funcție de numărul acestuia (vezi detalii). Să calculăm primul element înlocuind \(n\) cu unul.

\(n=1;\) \(a_1=3,4 1-0,6=2,8\)

Acum să găsim al douăzeci și cincilea termen înlocuind douăzeci și cinci în loc de \(n\).

\(n=25;\) \(a_(25)=3,4 25-0,6=84,4\)

Ei bine, acum calculăm suma necesară fără probleme.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Răspunsul este gata.

Răspuns: \(S_(25)=1090\).

Pentru suma \(n\) primilor termeni, puteți obține o altă formulă: trebuie doar să \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) în loc de \(a_n\) înlocuiți formula \(a_n=a_1+(n-1)d\). Primim:

Formula pentru suma primilor n termeni este: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), unde

\(S_n\) – suma necesară \(n\) a primelor elemente;
\(a_1\) este primul termen care trebuie însumat;
\(d\) – diferență de progresie;
\(n\) - numărul de elemente din sumă.

Exemplu. Aflați suma primilor \(33\)-ex termeni ai progresiei aritmetice: \(17\); \(15,5\); \(paisprezece\)…
Soluţie:

Răspuns: \(S_(33)=-231\).

Probleme de progresie aritmetică mai complexe

Acum aveți toate informațiile de care aveți nevoie pentru a rezolva aproape orice problemă de progresie aritmetică. Să încheiem subiectul luând în considerare problemele în care trebuie nu numai să aplici formule, ci și să te gândești puțin (la matematică, acest lucru poate fi util ☺)

Exemplu (OGE). Aflați suma tuturor termenilor negativi ai progresiei: \(-19,3\); \(-19\); \(-18,7\)…
Soluţie:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Sarcina este foarte asemănătoare cu cea anterioară. Începem să rezolvăm la fel: mai întâi găsim \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Acum am înlocui \(d\) în formula pentru suma ... și aici apare o mică nuanță - nu știm \(n\). Cu alte cuvinte, nu știm câți termeni vor trebui adăugați. Cum să aflu? Să ne gândim. Vom înceta să mai adăugăm elemente când ajungem la primul element pozitiv. Adică, trebuie să aflați numărul acestui element. Cum? Să notăm formula pentru calcularea oricărui element al unei progresii aritmetice: \(a_n=a_1+(n-1)d\) pentru cazul nostru.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1) 0,3\)

Avem nevoie ca \(a_n\) să fie mai mare decât zero. Să aflăm pentru ce \(n\) se va întâmpla asta.

\(-19,3+(n-1) 0,3>0\)

\((n-1) 0,3>19,3\) \(|:0,3\)

Împărțim ambele părți ale inegalității la \(0,3\).

\(n-1>\)\(\frac(19,3)(0,3)\)

Transferăm minus unu, fără a uita să schimbăm semnele

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Tehnica de calcul...

\(n>65.333…\)

…și se dovedește că primul element pozitiv va avea numărul \(66\). În consecință, ultimul negativ are \(n=65\). Pentru orice eventualitate, hai să verificăm.

\(n=65;\) \(a_(65)=-19,3+(65-1) 0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1) 0,3=0,2\)

Astfel, trebuie să adăugăm primele \(65\) elemente.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Răspunsul este gata.

Răspuns: \(S_(65)=-630,5\).

Exemplu (OGE). Progresia aritmetica este data de conditiile: \(a_1=-33\); \(a_(n+1)=a_n+4\). Găsiți suma de la elementul \(26\)-lea la \(42\) inclusiv.
Soluţie:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

În această problemă, trebuie să găsiți și suma elementelor, dar începând nu de la primul, ci de la \(26\)-lea. Nu avem o formulă pentru asta. Cum să decizi?
Ușor - pentru a obține suma de la \(26\)th la \(42\)th, trebuie mai întâi să găsiți suma de la \(1\)th la \(42\)th, apoi scădeți din ea suma din primul la \ (25 \) al-lea (vezi poza).


Pentru progresia noastră \(a_1=-33\) și diferența \(d=4\) (la urma urmei, adăugăm patru la elementul anterior pentru a găsi următorul). Știind acest lucru, găsim suma primelor elemente \(42\)-uh.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Acum suma primelor \(25\)-ele elemente.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Și în sfârșit, calculăm răspunsul.

\(S=S_(42)-S_(25)=2058-375=1683\)

Răspuns: \(S=1683\).

Pentru o progresie aritmetică, există mai multe formule pe care nu le-am luat în considerare în acest articol din cauza utilităţii lor practice reduse. Cu toate acestea, le puteți găsi cu ușurință.

Matematica are propria ei frumusețe, ca și pictura și poezia.

Om de știință rus, mecanic N.E. Jukovski

Sarcinile foarte frecvente la probele de admitere la matematică sunt sarcini legate de conceptul de progresie aritmetică. Pentru a rezolva cu succes astfel de probleme, este necesar să cunoașteți bine proprietățile unei progresii aritmetice și să aveți anumite abilități în aplicarea lor.

Să ne amintim mai întâi principalele proprietăți ale unei progresii aritmetice și să prezentăm cele mai importante formule, asociat cu acest concept.

Definiție. Secvență numerică, în care fiecare termen ulterior diferă de cel precedent prin acelaşi număr, numită progresie aritmetică. În același timp, numărulse numeste diferenta de progresie.

Pentru o progresie aritmetică, formulele sunt valabile

, (1)

Unde . Formula (1) se numește formula termenului comun al unei progresii aritmetice, iar formula (2) este proprietatea principală a unei progresii aritmetice: fiecare membru al progresiei coincide cu media aritmetică a membrilor săi vecini și .

Rețineți că tocmai din cauza acestei proprietăți progresia luată în considerare este numită „aritmetică”.

Formulele (1) și (2) de mai sus sunt rezumate după cum urmează:

(3)

Pentru a calcula suma primul membrii unei progresii aritmeticese folosește de obicei formula

(5) unde și .

Dacă luăm în considerare formula (1), atunci formula (5) implică

Dacă desemnăm

Unde . Deoarece , atunci formulele (7) și (8) sunt o generalizare a formulelor corespunzătoare (5) și (6).

În special , din formula (5) rezultă, ce

Printre cele puțin cunoscute de majoritatea studenților se numără proprietatea unei progresii aritmetice, formulată prin intermediul următoarei teoreme.

Teorema. Daca atunci

Dovada. Daca atunci

Teorema a fost demonstrată.

De exemplu , folosind teorema, se poate arăta că

Să trecem la luarea în considerare a exemplelor tipice de rezolvare a problemelor pe tema „Progresie aritmetică”.

Exemplul 1 Lasă și . Găsi .

Soluţie. Aplicând formula (6), obținem . Din moment ce și , apoi sau .

Exemplul 2 Mai lasă de trei ori, iar la împărțirea la cât, rezultă 2, iar restul este 8. Determinați și.

Soluţie. Sistemul de ecuații rezultă din condiția exemplului

Deoarece , , și , atunci din sistemul de ecuații (10) obținem

Rezolvarea acestui sistem de ecuații sunt și .

Exemplul 3 Găsiți dacă și .

Soluţie. Conform formulei (5), avem sau . Cu toate acestea, folosind proprietatea (9), obținem .

Din moment ce și , apoi din egalitate urmează ecuația sau .

Exemplul 4 Găsiți dacă .

Soluţie.Prin formula (5) avem

Cu toate acestea, folosind teorema, se poate scrie

De aici și din formula (11) obținem .

Exemplul 5. Dat: . Găsi .

Soluţie. De atunci . Cu toate acestea , prin urmare .

Exemplul 6 Să , și . Găsi .

Soluţie. Folosind formula (9), obținem . Prin urmare, dacă , atunci sau .

Din moment ce şi atunci aici avem un sistem de ecuații

Rezolvând care, obținem și .

Rădăcina naturală a ecuației este .

Exemplul 7 Găsiți dacă și .

Soluţie. Deoarece conform formulei (3) avem că , atunci sistemul de ecuații rezultă din condiția problemei

Dacă înlocuim expresiaîn a doua ecuație a sistemului, atunci obținem sau .

Rădăcinile ecuației pătratice suntși .

Să luăm în considerare două cazuri.

1. Fie , atunci . De când și , atunci .

În acest caz, conform formulei (6), avem

2. Dacă , atunci , și

Raspuns: si.

Exemplul 8 Se știe că și Găsi .

Soluţie.Ținând cont de formula (5) și de condiția exemplului, scriem și .

Aceasta implică sistemul de ecuații

Dacă înmulțim prima ecuație a sistemului cu 2 și apoi o adăugăm la a doua ecuație, obținem

Conform formulei (9), avem. În acest sens, din (12) rezultă sau .

De când și , atunci .

Răspuns: .

Exemplul 9 Găsiți dacă și .

Soluţie. Din moment ce , și după condiție , atunci sau .

Din formula (5) se știe, ce . De atunci .

Prin urmare , aici avem un sistem de ecuații liniare

De aici obținem și . Ținând cont de formula (8), scriem .

Exemplul 10 Rezolvați ecuația.

Soluţie. Din ecuația dată rezultă că . Să presupunem că , , și . În acest caz .

Conform formulei (1), putem scrie sau .

Deoarece , ecuația (13) are o rădăcină adecvată unică .

Exemplul 11. Găsiți valoarea maximă cu condiția ca și .

Soluţie. De la , atunci progresia aritmetică considerată este în scădere. În acest sens, expresia capătă o valoare maximă atunci când este numărul membrului pozitiv minim al progresiei.

Folosim formula (1) și faptul, care și . Apoi obținem asta sau .

Pentru că, atunci sau . Cu toate acestea, în această inegalitatecel mai mare număr natural, de aceea .

Dacă valorile și sunt înlocuite în formula (6), atunci obținem .

Răspuns: .

Exemplul 12. Aflați suma tuturor numerelor naturale din două cifre care, atunci când sunt împărțite la 6, au restul de 5.

Soluţie. Se notează prin mulțimea tuturor numerelor naturale cu două valori, adică . În continuare, construim o submulțime constând din acele elemente (numere) ale mulțimii care, împărțite la numărul 6, dau un rest de 5.

Ușor de instalat, ce . Evident , că elementele ansambluluiformează o progresie aritmetică, în care și .

Pentru a determina cardinalitatea (numărul de elemente) mulțimii, presupunem că . Deoarece și , atunci formula (1) implică sau . Ținând cont de formula (5), obținem .

Exemplele de mai sus de rezolvare a problemelor nu pot pretinde în niciun caz a fi exhaustive. Acest articol se bazează pe analiză metode moderne rezolvarea unor probleme tipice pe o anumită temă. Pentru un studiu mai profund al metodelor de rezolvare a problemelor legate de progresia aritmetică, este indicat să consultați lista de literatură recomandată.

1. Culegere de sarcini la matematică pentru solicitanții la universitățile tehnice / Ed. M.I. Scanavi. - M .: Lumea și educația, 2013. - 608 p.

2. Suprun V.P. Matematică pentru liceeni: secțiuni suplimentare curiculumul scolar. – M.: Lenand / URSS, 2014. - 216 p.

3. Medynsky M.M. Un curs complet de matematică elementară în sarcini și exerciții. Cartea 2: Secvențe de numere și progresii. – M.: Editus, 2015. - 208 p.

Aveti vreo intrebare?

Pentru a obține ajutorul unui tutor - înregistrați-vă.

site-ul, cu copierea integrală sau parțială a materialului, este necesară un link către sursă.

Când studiezi algebra în scoala de invatamant general(Clasa a 9-a) Una dintre subiectele importante este studiul șirurilor numerice, care includ progresii - geometrice și aritmetice. În acest articol, vom lua în considerare o progresie aritmetică și exemple cu soluții.

Ce este o progresie aritmetică?

Pentru a înțelege acest lucru, este necesar să se dea o definiție a progresiei luate în considerare, precum și să se dea formulele de bază care vor fi utilizate în continuare în rezolvarea problemelor.

O progresie aritmetică sau algebrică este un astfel de set de numere raționale ordonate, fiecare membru al cărora diferă de cel precedent printr-o valoare constantă. Această valoare se numește diferență. Adică, cunoscând orice membru al unei serii ordonate de numere și diferența, puteți restabili întreaga progresie aritmetică.

Să luăm un exemplu. Următoarea succesiune de numere va fi o progresie aritmetică: 4, 8, 12, 16, ..., deoarece diferența în acest caz este 4 (8 - 4 = 12 - 8 = 16 - 12). Dar mulțimea numerelor 3, 5, 8, 12, 17 nu mai poate fi atribuită tipului de progresie considerat, deoarece diferența pentru aceasta nu este o valoare constantă (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Formule importante

Vom oferi acum formulele de bază care vor fi necesare pentru a rezolva probleme folosind o progresie aritmetică. Fie un n să desemneze al n-lea membru al secvenței, unde n este un număr întreg. Diferența este notată de litera latină d. Atunci următoarele expresii sunt adevărate:

  1. Pentru a determina valoarea celui de-al n-lea termen, formula este potrivită: a n \u003d (n-1) * d + a 1.
  2. Pentru a determina suma primilor n termeni: S n = (a n + a 1)*n/2.

Pentru a înțelege orice exemplu de progresie aritmetică cu o soluție în clasa a 9-a, este suficient să ne amintim aceste două formule, deoarece orice probleme de tipul luat în considerare sunt construite pe utilizarea lor. De asemenea, nu uitați că diferența de progresie este determinată de formula: d = a n - a n-1 .

Exemplul #1: Găsirea unui membru necunoscut

Dăm un exemplu simplu de progresie aritmetică și formulele care trebuie folosite pentru rezolvare.

Să fie dată șirul 10, 8, 6, 4, ..., este necesar să găsim cinci termeni în ea.

Din condițiile problemei rezultă deja că primii 4 termeni sunt cunoscuți. Al cincilea poate fi definit în două moduri:

  1. Să calculăm mai întâi diferența. Avem: d = 8 - 10 = -2. În mod similar, se poate lua oricare alți doi termeni stând unul lângă celălalt. De exemplu, d = 4 - 6 = -2. Deoarece se știe că d \u003d a n - a n-1, apoi d \u003d a 5 - a 4, de unde obținem: a 5 \u003d a 4 + d. Inlocuim valorile cunoscute: a 5 = 4 + (-2) = 2.
  2. A doua metodă necesită, de asemenea, cunoașterea diferenței progresiei în cauză, așa că mai întâi trebuie să o determinați, așa cum se arată mai sus (d = -2). Știind că primul termen a 1 = 10, folosim formula pentru numărul n al șirului. Avem: a n \u003d (n - 1) * d + a 1 \u003d (n - 1) * (-2) + 10 \u003d 12 - 2 * n. Înlocuind n = 5 în ultima expresie, obținem: a 5 = 12-2 * 5 = 2.

După cum puteți vedea, ambele soluții duc la același rezultat. Rețineți că în acest exemplu diferența d a progresiei este negativă. Astfel de secvențe se numesc descrescătoare deoarece fiecare termen succesiv este mai mic decât cel anterior.

Exemplul #2: diferența de progresie

Acum să complicăm puțin sarcina, să dăm un exemplu de cum

Se știe că la unii primul termen este egal cu 6, iar al 7-lea termen este egal cu 18. Este necesar să găsim diferența și să restabilim această secvență la al 7-lea termen.

Să folosim formula pentru a determina termenul necunoscut: a n = (n - 1) * d + a 1 . Înlocuim datele cunoscute din condiție în ea, adică numerele a 1 și a 7, avem: 18 \u003d 6 + 6 * d. Din această expresie, puteți calcula cu ușurință diferența: d = (18 - 6) / 6 = 2. Astfel, s-a răspuns la prima parte a problemei.

Pentru a restabili secvența celui de-al 7-lea membru, ar trebui să utilizați definiția unei progresii algebrice, adică a 2 = a 1 + d, a 3 = a 2 + d și așa mai departe. Ca rezultat, restabilim întreaga secvență: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16 și 7 = 18.

Exemplul #3: realizarea unei progresii

Să complicăm și mai mult starea problemei. Acum trebuie să răspundeți la întrebarea cum să găsiți o progresie aritmetică. Putem da următorul exemplu: se dau două numere, de exemplu, 4 și 5. Este necesar să se facă o progresie algebrică astfel încât încă trei termeni să se potrivească între aceștia.

Înainte de a începe să rezolvați această problemă, este necesar să înțelegeți ce loc vor ocupa numerele date în progresia viitoare. Deoarece vor mai exista trei termeni între ei, apoi un 1 \u003d -4 și un 5 \u003d 5. După ce am stabilit acest lucru, trecem la o sarcină similară celei anterioare. Din nou, pentru al n-lea termen, folosim formula, obținem: a 5 \u003d a 1 + 4 * d. De la: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2,25. Aici, diferența nu este o valoare întreagă, ci este un număr rațional, deci formulele pentru progresia algebrică rămân aceleași.

Acum să adăugăm diferența găsită la un 1 și să restabilim membrii lipsă ai progresiei. Obținem: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 \u003d 2,75 + 2,25 \u, 50 care a coincis cu starea problemei.

Exemplul #4: primul membru al progresiei

Continuăm să dăm exemple de progresie aritmetică cu o soluție. În toate problemele anterioare, era cunoscut primul număr al progresiei algebrice. Acum luați în considerare o problemă de alt tip: să fie date două numere, unde a 15 = 50 și a 43 = 37. Este necesar să aflăm de la ce număr începe această succesiune.

Formulele care au fost folosite până acum presupun cunoașterea a 1 și d. Nu se știe nimic despre aceste cifre în starea problemei. Cu toate acestea, să scriem expresiile pentru fiecare termen despre care avem informații: a 15 = a 1 + 14 * d și a 43 = a 1 + 42 * d. Avem două ecuații în care există 2 mărimi necunoscute (a 1 și d). Aceasta înseamnă că problema se reduce la rezolvarea unui sistem de ecuații liniare.

Sistemul specificat este cel mai ușor de rezolvat dacă exprimați un 1 în fiecare ecuație și apoi comparați expresiile rezultate. Prima ecuație: a 1 = a 15 - 14 * d = 50 - 14 * d; a doua ecuație: a 1 \u003d a 43 - 42 * d \u003d 37 - 42 * d. Echivalând aceste expresii, obținem: 50 - 14 * d \u003d 37 - 42 * d, de unde diferența d \u003d (37 - 50) / (42 - 14) \u003d - 0,464 (sunt date doar 3 zecimale).

Cunoscând d, puteți folosi oricare dintre cele 2 expresii de mai sus pentru a 1 . De exemplu, mai întâi: a 1 \u003d 50 - 14 * d \u003d 50 - 14 * (- 0,464) \u003d 56,496.

Dacă există îndoieli cu privire la rezultat, îl puteți verifica, de exemplu, determinați al 43-lea membru al progresiei, care este specificat în condiție. Obținem: a 43 \u003d a 1 + 42 * d \u003d 56,496 + 42 * (- 0,464) \u003d 37,008. O mică eroare se datorează faptului că în calcule a fost utilizată rotunjirea la miimi.

Exemplul #5: Sumă

Acum să ne uităm la câteva exemple cu soluții pentru suma unei progresii aritmetice.

Să se dea o progresie numerică de următoarea formă: 1, 2, 3, 4, ...,. Cum se calculează suma a 100 dintre aceste numere?

Datorită dezvoltării tehnologiei informatice, această problemă poate fi rezolvată, adică adunăm secvențial toate numerele, ceea ce computerul va face imediat ce o persoană apasă tasta Enter. Problema poate fi însă rezolvată mental dacă acordați atenție că seria de numere prezentată este o progresie algebrică, iar diferența ei este 1. Aplicând formula pentru sumă, obținem: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Este curios de observat că această problemă se numește „gaussiană”, întrucât la începutul secolului al XVIII-lea celebrul german, încă la vârsta de doar 10 ani, a putut să o rezolve în mintea lui în câteva secunde. Băiatul nu știa formula pentru suma unei progresii algebrice, dar a observat că, dacă adaugi perechi de numere situate la marginile șirului, obții întotdeauna același rezultat, adică 1 + 100 = 2 + 99. = 3 + 98 = ... și, deoarece aceste sume vor fi exact 50 (100 / 2), atunci pentru a obține răspunsul corect, este suficient să înmulțiți 50 cu 101.

Exemplul #6: suma termenilor de la n la m

Un alt exemplu tipic al sumei unei progresii aritmetice este următorul: având în vedere o serie de numere: 3, 7, 11, 15, ..., trebuie să aflați care va fi suma termenilor săi de la 8 la 14.

Problema este rezolvată în două moduri. Primul dintre ei implică găsirea de termeni necunoscuți de la 8 la 14 și apoi însumarea lor secvențială. Deoarece există puțini termeni, această metodă nu este suficient de laborioasă. Cu toate acestea, se propune rezolvarea acestei probleme prin a doua metodă, care este mai universală.

Ideea este de a obține o formulă pentru suma unei progresii algebrice între termenii m și n, unde n > m sunt numere întregi. Pentru ambele cazuri, scriem două expresii pentru suma:

  1. S m \u003d m * (a m + a 1) / 2.
  2. S n \u003d n * (a n + a 1) / 2.

Deoarece n > m, este evident că suma 2 o include pe prima. Ultima concluzie înseamnă că dacă luăm diferența dintre aceste sume și îi adăugăm termenul a m (în cazul luării diferenței, se scade din suma S n), atunci obținem răspunsul necesar la problemă. Avem: S mn \u003d S n - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m / 2). Este necesar să se înlocuiască formule pentru a n și a m în această expresie. Atunci obținem: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

Formula rezultată este oarecum greoaie, totuși, suma S mn depinde doar de n, m, a 1 și d. În cazul nostru, a 1 = 3, d = 4, n = 14, m = 8. Înlocuind aceste numere, obținem: S mn = 301.

După cum se poate observa din soluțiile de mai sus, toate problemele se bazează pe cunoașterea expresiei pentru al n-lea termen și a formulei pentru suma mulțimii primilor termeni. Înainte de a începe să rezolvați oricare dintre aceste probleme, este recomandat să citiți cu atenție condiția, să înțelegeți clar ce doriți să găsiți și abia apoi să continuați cu soluția.

Un alt sfat este să depuneți eforturi pentru simplitate, adică dacă puteți răspunde la întrebare fără a utiliza calcule matematice complexe, atunci trebuie să faceți exact asta, deoarece în acest caz probabilitatea de a face o greșeală este mai mică. De exemplu, în exemplul unei progresii aritmetice cu soluția nr. 6, s-ar putea opri la formula S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m și împărțiți sarcina generală în subsarcini separate (în acest caz, găsiți mai întâi termenii a n și a m).

Dacă există îndoieli cu privire la rezultatul obținut, se recomandă verificarea acestuia, așa cum s-a făcut în unele dintre exemplele date. Cum să găsești o progresie aritmetică, am aflat. Odată ce îți dai seama, nu este atât de greu.


Da, da: progresia aritmetică nu este o jucărie pentru tine :)

Ei bine, prieteni, dacă citiți acest text, atunci dovada internă a capacului îmi spune că încă nu știți ce este o progresie aritmetică, dar chiar (nu, așa: SOOOOO!) doriți să știți. Prin urmare, nu vă voi chinui cu prezentări lungi și voi trece imediat la treabă.

Pentru început, câteva exemple. Luați în considerare mai multe seturi de numere:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Ce au în comun toate aceste seturi? La prima vedere, nimic. Dar de fapt există ceva. Și anume: fiecare element următor diferă de cel precedent prin același număr.

Judecă singur. Primul set este doar numere consecutive, fiecare mai mult decât precedentul. În al doilea caz, diferența dintre numerele adiacente este deja egală cu cinci, dar această diferență este încă constantă. În al treilea caz, există rădăcini în general. Cu toate acestea, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, în timp ce $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, adică. caz în care fiecare element următor crește pur și simplu cu $\sqrt(2)$ (și nu vă speriați că acest număr este irațional).

Deci: toate astfel de secvențe se numesc doar progresii aritmetice. Să dăm o definiție strictă:

Definiție. O succesiune de numere în care fiecare următor diferă de precedentul prin exact aceeași cantitate se numește progresie aritmetică. Însuși valoarea cu care numerele diferă se numește diferență de progresie și este cel mai adesea notă cu litera $d$.

Notație: $\left(((a)_(n)) \right)$ este progresia în sine, $d$ este diferența acesteia.

Și doar câteva observații importante. În primul rând, progresia este luată în considerare numai ordonat succesiune de numere: au voie să fie citite strict în ordinea în care sunt scrise - și nimic altceva. Nu puteți rearanja sau schimba numerele.

În al doilea rând, succesiunea în sine poate fi fie finită, fie infinită. De exemplu, mulțimea (1; 2; 3) este în mod evident o progresie aritmetică finită. Dar dacă scrieți ceva de genul (1; 2; 3; 4; ...) - aceasta este deja o progresie infinită. Punctele de suspensie de după cele patru, parcă, sugerează că destul de multe numere merg mai departe. Infinit multe, de exemplu. :)

De asemenea, aș dori să remarc că progresiile sunt în creștere și scădere. Am văzut deja crescătoare - același set (1; 2; 3; 4; ...). Iată exemple de progresii în scădere:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Bine, bine: ultimul exemplu poate părea excesiv de complicat. Dar restul cred că ai înțeles. Prin urmare, introducem noi definiții:

Definiție. O progresie aritmetica se numeste:

  1. crescând dacă fiecare element următor este mai mare decât cel anterior;
  2. descrescătoare, dacă, dimpotrivă, fiecare element ulterior este mai mic decât cel anterior.

În plus, există așa-numitele secvențe „staționare” - ele constau din același număr care se repetă. De exemplu, (3; 3; 3; ...).

Rămâne o singură întrebare: cum să distingem o progresie crescătoare de una în scădere? Din fericire, totul aici depinde doar de semnul numărului $d$, adică. diferente de progresie:

  1. Dacă $d \gt 0$, atunci progresia este în creștere;
  2. Dacă $d \lt 0$, atunci progresia este în mod evident în scădere;
  3. În sfârșit, există cazul $d=0$ — în acest caz întreaga progresie se reduce la o succesiune staționară de numere identice: (1; 1; 1; 1; ...), etc.

Să încercăm să calculăm diferența $d$ pentru cele trei progresii descrescătoare de mai sus. Pentru a face acest lucru, este suficient să luați oricare două elemente adiacente (de exemplu, primul și al doilea) și să scădeți din numărul din dreapta, numărul din stânga. Va arăta astfel:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

După cum puteți vedea, în toate cele trei cazuri diferența sa dovedit cu adevărat negativă. Și acum că ne-am dat seama mai mult sau mai puțin definițiile, este timpul să ne dăm seama cum sunt descrise progresiile și ce proprietăți au acestea.

Membrii progresiei și formulei recurente

Deoarece elementele secvențelor noastre nu pot fi interschimbate, ele pot fi numerotate:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \dreapta\)\]

Elementele individuale ale acestui set sunt numite membri ai progresiei. Ele sunt indicate astfel cu ajutorul unui număr: primul membru, al doilea membru etc.

În plus, după cum știm deja, membrii vecini ai progresiei sunt legați prin formula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Pe scurt, pentru a găsi $n$-lea termen al progresiei, trebuie să cunoașteți $n-1$-lea termen și diferența $d$. O astfel de formulă se numește recurentă, deoarece cu ajutorul ei poți găsi orice număr, cunoscându-l doar pe cel anterior (și de fapt, pe toate precedentele). Acest lucru este foarte incomod, deci există o formulă mai complicată care reduce orice calcul la primul termen și diferența:

\[((a)_(n))=((a)_(1))+\stanga(n-1 \dreapta)d\]

Probabil ați mai întâlnit această formulă. Le place să o dea în tot felul de cărți de referință și reshebniks. Și în orice manual sensibil de matematică, este unul dintre primele.

Totuși, vă sugerez să exersați puțin.

Sarcina numărul 1. Notați primii trei termeni ai progresiei aritmetice $\left(((a)_(n)) \right)$ dacă $((a)_(1))=8,d=-5$.

Soluţie. Deci, cunoaștem primul termen $((a)_(1))=8$ și diferența de progresie $d=-5$. Să folosim formula tocmai dată și să înlocuim $n=1$, $n=2$ și $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Răspuns: (8; 3; -2)

Asta e tot! Rețineți că progresia noastră este în scădere.

Desigur, $n=1$ nu ar fi putut fi înlocuit - știm deja primul termen. Totuși, înlocuind unitatea, ne-am asigurat că și pentru primul termen formula noastră funcționează. În alte cazuri, totul s-a rezumat la aritmetică banală.

Sarcina numărul 2. Scrieți primii trei termeni ai unei progresii aritmetice dacă al șaptelea termen este -40 și al șaptesprezecelea termen este -50.

Soluţie. Scriem starea problemei în termenii obișnuiți:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \dreapta.\]

Am pus semnul sistemului pentru că aceste cerințe trebuie îndeplinite simultan. Și acum observăm că dacă scădem prima ecuație din a doua ecuație (avem dreptul să facem asta, deoarece avem un sistem), obținem asta:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(align)\]

Așa am găsit diferența de progres! Rămâne să înlocuiți numărul găsit în oricare dintre ecuațiile sistemului. De exemplu, în primul:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrice)\]

Acum, cunoscând primul termen și diferența, rămâne să găsim al doilea și al treilea termen:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Gata! Problema rezolvata.

Răspuns: (-34; -35; -36)

Observați o proprietate curioasă a progresiei pe care am descoperit-o: dacă luăm termenii $n$th și $m$th și îi scădem unul de celălalt, obținem diferența de progresie înmulțită cu numărul $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Simplu dar foarte proprietate utilă, pe care neapărat trebuie să-l cunoașteți - cu ajutorul lui puteți accelera semnificativ rezolvarea multor probleme în progresii. Iată un prim exemplu în acest sens:

Sarcina numărul 3. Al cincilea termen al progresiei aritmetice este 8,4, iar al zecelea termen este 14,4. Găsiți al cincisprezecelea termen al acestei progresii.

Soluţie. Deoarece $((a)_(5))=8,4$, $((a)_(10))=14,4$ și trebuie să găsim $((a)_(15))$, observăm următoarele:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Dar prin condiția $((a)_(10))-((a)_(5))=14.4-8.4=6$, deci $5d=6$, de unde avem:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(align)\]

Răspuns: 20.4

Asta e tot! Nu a fost nevoie să compunem niciun sistem de ecuații și să calculăm primul termen și diferența - totul a fost decis în doar câteva linii.

Acum să luăm în considerare un alt tip de problemă - căutarea membrilor negativi și pozitivi ai progresiei. Nu este un secret că, dacă progresia crește, în timp ce primul său termen este negativ, atunci mai devreme sau mai târziu vor apărea termeni pozitivi în ea. Și invers: termenii unei progresii în scădere vor deveni mai devreme sau mai târziu negativi.

În același timp, este departe de a fi întotdeauna posibil să găsim acest moment „pe frunte”, sortând secvenţial printre elemente. Adesea, problemele sunt concepute în așa fel încât, fără a cunoaște formulele, calculele ar dura mai multe foi - doar am adormi până am găsi răspunsul. Prin urmare, vom încerca să rezolvăm aceste probleme într-un mod mai rapid.

Sarcina numărul 4. Câți termeni negativi într-o progresie aritmetică -38,5; -35,8; …?

Soluţie. Deci, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, din care găsim imediat diferența:

Rețineți că diferența este pozitivă, deci progresia este în creștere. Primul termen este negativ, așa că într-adevăr, la un moment dat, ne vom împiedica de numere pozitive. Singura întrebare este când se va întâmpla asta.

Să încercăm să aflăm: până la ce oră (adică până la ce numar natural$n$) negativitatea termenilor se păstrează:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \dreapta. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Ultima linie are nevoie de clarificare. Deci știm că $n \lt 15\frac(7)(27)$. Pe de altă parte, doar valorile întregi ale numărului ne vor potrivi (mai mult: $n\in \mathbb(N)$), deci cel mai mare număr permis este tocmai $n=15$ și în niciun caz 16.

Sarcina numărul 5. În progresie aritmetică $(()_(5))=-150,(()_(6))=-147$. Aflați numărul primului termen pozitiv al acestei progresii.

Aceasta ar fi exact aceeași problemă ca cea anterioară, dar nu știm $((a)_(1))$. Dar termenii vecini sunt cunoscuți: $((a)_(5))$ și $((a)_(6))$, așa că putem găsi cu ușurință diferența de progresie:

În plus, să încercăm să exprimăm al cincilea termen în termeni de primul și diferența folosind formula standard:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Acum procedăm prin analogie cu problema anterioară. Aflăm în ce moment în succesiunea noastră vor apărea numerele pozitive:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Soluția întreagă minimă a acestei inegalități este numărul 56.

Vă rugăm să rețineți că în ultima sarcină totul a fost redus la o inegalitate strictă, așa că opțiunea $n=55$ nu ne va potrivi.

Acum că am învățat cum să rezolvăm probleme simple, să trecem la altele mai complexe. Dar mai întâi, să învățăm o altă proprietate foarte utilă a progresiilor aritmetice, care ne va economisi mult timp și celule inegale în viitor. :)

Media aritmetică și liniuțe egale

Luați în considerare câțiva termeni consecutivi ai progresiei aritmetice crescătoare $\left(((a)_(n)) \right)$. Să încercăm să le marchem pe o linie numerică:

Membrii progresiei aritmetice pe linia numerică

Am notat în mod special membrii arbitrari $((a)_(n-3)),...,((a)_(n+3))$ și nu orice $((a)_(1)) , \ ((a)_(2)),\ ((a)_(3))$ etc. Pentru că regula, pe care o voi spune acum, funcționează la fel pentru orice „segmente”.

Și regula este foarte simplă. Să ne amintim formula recursivă și să o notăm pentru toți membrii marcați:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Cu toate acestea, aceste egalități pot fi rescrise diferit:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Ei bine, ce? Dar faptul că termenii $((a)_(n-1))$ și $((a)_(n+1))$ se află la aceeași distanță de $((a)_(n)) $ . Și această distanță este egală cu $d$. Același lucru se poate spune despre termenii $((a)_(n-2))$ și $((a)_(n+2))$ - sunt, de asemenea, eliminați din $((a)_(n) )$ cu aceeași distanță egală cu $2d$. Puteți continua la nesfârșit, dar imaginea ilustrează bine sensul


Membrii progresiei se află la aceeași distanță de centru

Ce înseamnă asta pentru noi? Aceasta înseamnă că puteți găsi $((a)_(n))$ dacă numerele învecinate sunt cunoscute:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Am dedus o afirmație magnifică: fiecare membru al unei progresii aritmetice este egal cu media aritmetică a membrilor vecini! Mai mult, ne putem abate de la $((a)_(n))$ la stânga și la dreapta nu cu un pas, ci cu $k$ pași - și totuși formula va fi corectă:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Acestea. putem găsi cu ușurință câțiva $((a)_(150))$ dacă știm $((a)_(100))$ și $((a)_(200))$, deoarece $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. La prima vedere, poate părea că acest fapt nu ne oferă nimic util. Cu toate acestea, în practică, multe sarcini sunt special „ascuțite” pentru utilizarea mediei aritmetice. Aruncă o privire:

Sarcina numărul 6. Găsiți toate valorile lui $x$ astfel încât numerele $-6((x)^(2))$, $x+1$ și $14+4((x)^(2))$ să fie membri consecutivi ai o progresie aritmetică (în ordinea specificată).

Soluţie. Deoarece aceste numere sunt membre ale unei progresii, condiția mediei aritmetice este îndeplinită pentru ele: elementul central $x+1$ poate fi exprimat în termeni de elemente învecinate:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

A ieșit clasic ecuație pătratică. Rădăcinile sale: $x=2$ și $x=-3$ sunt răspunsurile.

Răspuns: -3; 2.

Sarcina numărul 7. Găsiți valorile lui $$ astfel încât numerele $-1;4-3;(()^(2))+1$ să formeze o progresie aritmetică (în această ordine).

Soluţie. Din nou, exprimăm termenul de mijloc în termeni de media aritmetică a termenilor învecinați:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\dreapta.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

O altă ecuație pătratică. Și din nou două rădăcini: $x=6$ și $x=1$.

Raspunsul 1; 6.

Dacă în procesul de rezolvare a unei probleme obțineți niște numere brutale, sau nu sunteți complet sigur de corectitudinea răspunsurilor găsite, atunci există un truc minunat care vă permite să verificați: am rezolvat corect problema?

Să presupunem că în problema 6 avem răspunsurile -3 și 2. Cum putem verifica dacă aceste răspunsuri sunt corecte? Să le conectăm la starea originală și să vedem ce se întâmplă. Permiteți-mi să vă reamintesc că avem trei numere ($-6(()^(2))$, $+1$ și $14+4(()^(2))$), care ar trebui să formeze o progresie aritmetică. Înlocuiește $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Am primit numerele -54; −2; 50 care diferă cu 52 este, fără îndoială, o progresie aritmetică. Același lucru se întâmplă și pentru $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Din nou o progresie, dar cu o diferență de 27. Astfel, problema este rezolvată corect. Cei care doresc pot verifica singuri a doua sarcină, dar voi spune imediat: totul este corect și acolo.

În general, în timp ce rezolvăm ultimele sarcini, am dat peste alta fapt interesant, care trebuie reținut și:

Dacă trei numere sunt astfel încât al doilea este media primului și ultimului, atunci aceste numere formează o progresie aritmetică.

În viitor, înțelegerea acestei afirmații ne va permite să „construim” literalmente progresiile necesare pe baza stării problemei. Dar înainte de a ne angaja într-o astfel de „construcție”, ar trebui să fim atenți la încă un fapt, care decurge direct din ceea ce a fost deja luat în considerare.

Gruparea și suma elementelor

Să revenim din nou la linia numerică. Remarcăm acolo câțiva membri ai progresiei, între care, poate. merită mulți alți membri:

6 elemente marcate pe linia numerică

Să încercăm să exprimăm „coada din stânga” în termeni de $((a)_(n))$ și $d$, iar „coada din dreapta” în termeni de $((a)_(k))$ și $ d$. E foarte simplu:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Acum rețineți că următoarele sume sunt egale:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Mai simplu spus, dacă considerăm ca început două elemente ale progresiei, care în total sunt egale cu un anumit număr $S$, apoi începem să pășim din aceste elemente în direcții opuse (unul către celălalt sau invers pentru a ne îndepărta), apoi sumele elementelor de care ne vom împiedica vor fi de asemenea egale$S$. Acest lucru poate fi cel mai bine reprezentat grafic:


Aceleași liniuțe dau sume egale

Înțelegerea acestui fapt ne va permite să rezolvăm probleme cu un nivel fundamental de complexitate mai mare decât cele pe care le-am considerat mai sus. De exemplu, acestea:

Sarcina numărul 8. Determinați diferența unei progresii aritmetice în care primul termen este 66, iar produsul dintre al doilea și al doisprezecelea termeni este cel mai mic posibil.

Soluţie. Să scriem tot ce știm:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Deci, nu cunoaștem diferența progresiei $d$. De fapt, întreaga soluție va fi construită în jurul diferenței, deoarece produsul $((a)_(2))\cdot ((a)_(12))$ poate fi rescris după cum urmează:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Pentru cei din rezervor: am scos factorul comun 11 din a doua paranteză. Astfel, produsul dorit este o funcție pătratică față de variabila $d$. Prin urmare, luați în considerare funcția $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - graficul său va fi o parabolă cu ramuri în sus, deoarece dacă deschidem parantezele, obținem:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

După cum puteți vedea, coeficientul la cel mai înalt termen este 11 - acesta este număr pozitiv, deci avem de-a face cu o parabolă cu ramuri în sus:


programa funcţie pătratică- parabola

Vă rugăm să rețineți: această parabolă își ia valoarea minimă la vârful său cu abscisa $((d)_(0))$. Desigur, putem calcula această abscisă după schema standard (există o formulă $((d)_(0))=(-b)/(2a)\;$), dar ar fi mult mai rezonabil să rețineți că vârful dorit se află pe simetria axei parabolei, deci punctul $((d)_(0))$ este echidistant de rădăcinile ecuației $f\left(d \right)=0$:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

De aceea nu m-am grăbit să deschid parantezele: în forma originală, rădăcinile erau foarte, foarte ușor de găsit. Prin urmare, abscisa este egală cu media aritmetică a numerelor −66 și −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Ce ne dă numărul descoperit? Cu el, produsul solicitat ia cea mai mică valoare (apropo, nu am calculat $((y)_(\min ))$ - acest lucru nu este necesar de la noi). În același timp, acest număr este diferența progresiei inițiale, adică. am gasit raspunsul. :)

Răspuns: -36

Sarcina numărul 9. Introduceți trei numere între numerele $-\frac(1)(2)$ și $-\frac(1)(6)$ astfel încât împreună cu numerele date să formeze o progresie aritmetică.

Soluţie. De fapt, trebuie să facem o secvență de cinci numere, primul și ultimul număr fiind deja cunoscute. Notează numerele lipsă prin variabilele $x$, $y$ și $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Rețineți că numărul $y$ este „mijlocul” secvenței noastre - este echidistant de numerele $x$ și $z$ și de numerele $-\frac(1)(2)$ și $-\frac (1)( 6)$. Și dacă în acest moment nu putem obține $y$ din numerele $x$ și $z$, atunci situația este diferită cu capetele progresiei. Amintiți-vă media aritmetică:

Acum, cunoscând $y$, vom găsi numerele rămase. Rețineți că $x$ se află între $-\frac(1)(2)$ și $y=-\frac(1)(3)$ tocmai găsit. De aceea

Argumentând în mod similar, găsim numărul rămas:

Gata! Am găsit toate cele trei numere. Să le notăm în răspuns în ordinea în care ar trebui să fie introduse între numerele originale.

Răspuns: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Sarcina numărul 10. Între numerele 2 și 42, introduceți mai multe numere care, împreună cu numerele date, formează o progresie aritmetică, dacă se știe că suma primului, al doilea și ultimul dintre numerele introduse este 56.

Soluţie. O sarcină și mai dificilă, care, totuși, se rezolvă la fel ca și cele anterioare - prin media aritmetică. Problema este că nu știm exact câte numere să introducem. Prin urmare, pentru certitudine, presupunem că după inserare vor fi exact $n$ numere, iar primul dintre ele este 2, iar ultimul este 42. În acest caz, progresia aritmetică dorită poate fi reprezentată ca:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \dreapta\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Rețineți, totuși, că numerele $((a)_(2))$ și $((a)_(n-1))$ sunt obținute din numerele 2 și 42 care stau la margini cu un pas unul față de celălalt. , adică . spre centrul secvenței. Și asta înseamnă că

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Dar atunci expresia de mai sus poate fi rescrisă astfel:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Cunoscând $((a)_(3))$ și $((a)_(1))$, putem găsi cu ușurință diferența de progresie:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Săgeată la dreapta d=5. \\ \end(align)\]

Rămâne doar să găsiți membrii rămași:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Astfel, deja la pasul 9 vom ajunge la capătul din stânga secvenței - numărul 42. În total, au trebuit introduse doar 7 numere: 7; 12; 17; 22; 27; 32; 37.

Răspuns: 7; 12; 17; 22; 27; 32; 37

Sarcini de text cu progresii

În concluzie, aș dori să iau în considerare câteva probleme relativ simple. Ei bine, la fel de simple: pentru majoritatea elevilor care studiază matematica la școală și nu au citit ce este scris mai sus, aceste sarcini pot părea un gest. Cu toate acestea, tocmai astfel de sarcini sunt întâlnite în OGE și USE în matematică, așa că vă recomand să vă familiarizați cu ele.

Sarcina numărul 11. Echipa a produs 62 de piese în ianuarie, iar în fiecare lună următoare a produs cu 14 piese mai multe decât în ​​cea precedentă. Câte piese a produs brigada în noiembrie?

Soluţie. Evident, numărul de piese, vopsit pe lună, va fi o progresie aritmetică din ce în ce mai mare. Și:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Noiembrie este a 11-a lună a anului, așa că trebuie să găsim $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Prin urmare, în noiembrie vor fi fabricate 202 piese.

Sarcina numărul 12. Atelierul de legătorie a legat 216 cărți în ianuarie, iar în fiecare lună a legat cu 4 cărți mai multe decât luna precedentă. Câte cărți a legat atelierul în decembrie?

Soluţie. Tot la fel:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Decembrie este ultima, a 12-a lună a anului, așa că căutăm $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Acesta este răspunsul - 260 de cărți vor fi legate în decembrie.

Ei bine, dacă ați citit până aici, mă grăbesc să vă felicit: ați finalizat cu succes „cursul tânăr de luptători” în progresii aritmetice. Putem trece în siguranță la următoarea lecție, unde vom studia formula sumei progresiei, precum și consecințele importante și foarte utile din aceasta.

Se încarcă...Se încarcă...