Закон сохранения энергии для постоянного тока. Закон сохранения энергии. Закон сохранения энергии для электрического поля в несегнетоэлектрической среде

Андрей Владимирович Гаврилов, доцент НГАВТ

Закон сохранения энергии в электричестве.................................................... 4

Основные законы и формулы ................................................................................................................................................ 4

Примеры решения задач ............................................................................................................................................................ 8

Задачи для самостоятельного решения ..................................................................................................................... 10

Галина Степановна Лукина, главный методист ХКЗФМШ

Физика и живая природа................................................................................................. 16

1. Задания для самостоятельного выполнения ...................................................................................................... 16

2. Задачи-вопросы ....................................................................................................................................................................... 17

3. Наблюдения ................................................................................................................................................................................ 21

4. Задачи для самостоятельного решения ................................................................................................................ 22

5. Приложение ................................................................................................................................................................................ 26

Аркадий Федорович Немцев, зав. отделом ХКЦРТДЮ

ТЕПЛОВЫЕ ПРОЦЕССЫ ВОКРУГ НАС............................................................................... 38

ТЕПЛОЕМКОСТЬ ............................................................................................................................................................................ 38

Плавление. Испарение ............................................................................................................................................................... 38

Удельная теплота сгорания топлива ........................................................................................................................... 39

ЗАДАЧИ ............................................................................................................................................................................................... 41

Физические задачи из литературных произведений ............................................................................................ 43

, доцент НГАВТ

Закон сохранения энергии в электричестве

Основные законы и формулы

Если в проводящей среде (проводнике) создать электрическое поле, то в ней возникает упорядоченное движение электрических зарядов – электрический ток

При прохождении электрического тока через однородный проводник выделяется теплота, называемая джоулевой теплотой. Количество выделившейся теплоты определяется законом Джоуля – Ленца:

Данная форма закона применима только для постоянного тока, то есть для такого тока, величина которого не изменяется с течением времени.

Количество теплоты, выделяющееся в проводнике в единицу времени, называется тепловой мощностью тока

.

Следует отметить, что при прохождении электрического тока, теплота может не только выделяться, но и поглощаться, что наблюдается при прохождении тока через спай разнородных металлов. Данное явление получило название эффекта Пельтье. Теплота, поглощаемая или выделяемая при эффекте Пельтье, является избыточной над джоулевой теплотой и определяется выражением

.

Где П12 – коэффициент Пельтье. В отличие от джоулевой теплоты, пропорциональной квадрату силы тока и всегда выделяющейся в проводнике, теплота Пельтье пропорциональна первой степени силы тока, а знак ее зависит от направления тока через спай металлов.

Работа тока полностью переходит в теплоту только в случае неподвижных металлических проводников. Если ток совершает механическую работу (например, в случае электрического двигателя), то работа тока переходит в теплоту лишь частично.

Для того чтобы через проводник достаточно долго протекал электрический ток, необходимо принимать меры по поддержанию в проводнике электрического поля. Электростатическое поле, то есть поле неподвижных электрических зарядов, не способно длительное время поддерживать ток. В результате действия кулоновских сил в проводнике происходит такое перераспределение свободных носителей зарядов, при котором поле внутри него становится равным нулю. Так, если в электростатическое поле внести проводник, то возникшее в нем движение зарядов очень быстро прекращается и потенциал поля в любой точке проводника становится одинаковым.

Работа кулоновских сил по перемещению заряда определяется выражением:

Акул = q (φ1 - φ2).

Если заряд перемещается в электростатическом поле по замкнутой траектории, то работа кулоновских сил в этом случае равна нулю.

Для того, чтобы в электрической цепи длительное время протекал электрический ток, необходимо, чтобы цепь содержала участок, на котором на свободные заряды кроме кулоновских сил действовали бы силы природа которых отлична от кулоновских – сторонние силы. Сторонние силы на заряды действуют в особых устройствах - источниках тока. Так, например, в химических источниках тока, сторонние силы возникают в результате химических реакций.

Величина, числена равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС)

Химические источники тока способны поддерживать ток в цепи достаточно длительный промежуток времени, до тех пор, пока не происходят необратимые реакции с химическими соединениями, входящими в их состав. Так, если замкнуть проводником химический источник тока, то величина тока будет с течением времени уменьшаться до нуля по мере расходования энергии химических реакций в источнике.

Существуют обратимые химические источники тока – аккумуляторы. Такие устройства при разрядке можно восстанавливать - заряжать – то есть при помощи тока от внешнего источника восстанавливать их работоспособность за счет обращения химических реакций. При зарядке аккумуляторы накапливают электрическую энергию. Количество энергии, которую способен запасти аккумулятор, определяется его емкостью. Емкость аккумуляторов измеряется в ампер-часах.

Электрические цепи, то есть цепи в которых может протекать электрический ток, содержат источники тока, проводники, также в состав цепи могут входить конденсаторы.

Энергетический баланс в электрических цепях определяется законом сохранения и превращения энергии. Запишем его в следующем виде:

Авнеш = ΔW + Q.

где Авнеш – работа, совершенная над системой внешними силами, ΔW – изменение энергии системы, Q –выделившееся количество теплоты. Будем считать, что, если Авнеш > 0, то внешние силы совершают над системой положительную работу, а если Авнеш < 0, положительную работу совершает сама система, если ΔW>0, то энергия системы увеличивается, а если ΔW< 0, энергия уменьшается, если Q>0, то в системе выделяется тепло, а если Q< 0, тепло поглощается системой.

Энергия системы в общем случае складывается из различных видов энергии – это и энергия электростатического поля, и кинетическая энергия заряженных тел, и потенциальная энергия в поле силы тяжести.

Энергия электростатического поля может быть определена как через заряд, так и через характеристики электростатического поля.

Для уединенного проводника, то есть проводника находящегося вдали от других проводников, выражение для энергии поля имеет вид:

.

Соответственно для энергии заряженного конденсатора

.

В отличии от уединенного проводника, поле конденсатора сосредоточено в пространстве между его обкладкам. Энергию, запасенную в конденсаторе, можно определить по формуле:

Где Е – напряженность поля, а V – объем пространства, где локализовано поле. Для плоского конденсатора V=Sd.

Отношение энергии поля к объему, где это поле сосредоточено, называется объемной плотностью энергии электрического поля

Анализируя приведенные формулы, можно заметить, что изменение заряда конденсатора, его емкости или напряжения на обкладках, приводит к изменению и энергии электрического поля конденсатора.

Для изменения емкости заряженного конденсатора, например, путем раздвижения его обкладок, необходимо совершить внешнюю механическую работу. Это связано с тем, что обкладки заряжены разноименно, и работа совершается против кулоновских сил притяжения разноименных зарядов.

Если конденсатор подключен к источнику ЭДС то кроме механической работы, работу совершают и сторонние силы в источнике. Поэтому в этом случае работа внешних сил может быть представлена в виде суммы:

Авнеш = Амех + Аист.

Когда через источник ЭДС протекает заряд Δq сторонние силы, действующие на заряды в источнике, совершают работу

Аист = Δq ε.

Работа сторонних сил может быть как положительной, так и отрицательной. Если источник разряжается – то Δq >0 и Аист > 0, если источник заряжается – то Δq <0 и Аист < 0.

Так, например, если замкнуть через сопротивление обкладки конденсатора, то через сопротивление будет некоторое время протекать электрический ток, и на сопротивлении будет выделяться джоулева теплота. Следует отметить, что ток разряда конденсатора уменьшается с течением времени и формулу Теплоэнергетика" href="/text/category/teployenergetika/" rel="bookmark">тепловую энергию .

Однако, если процесс разрядки конденсатора будет осуществляться медленно, то теплота выделятся не будет:

.

Если t достаточно велико (стремится к бесконечности), то выделившееся количество теплоты Q может быть очень мало.

Примеры решения задач

Задача №1. Две металлические пластины А и В находятся на расстоянии d = 10 мм друг от друга. Между ними находится металлическая пластина С толщиной h = 2 мм (рис.1). Потенциал пластины А = 50В, а пластины В = - 60В. Как изменится энергия конденсатора, если вынуть пластину С. Площадь поверхности пластины С, параллельной пластинам А и В равна 10 см2.

Решение. Напряженность электрического поля внутри проводника равна нулю, поэтому при удалении металлической пластины из поля в области пространства, ранее занятой пластиной, появиться электрическое поле, энергия которого W. Найдем связь между энергией поля, его напряженностью и объемом.

; ; https://pandia.ru/text/78/048/images/image017_47.gif" width="169" height="44 src="> , где V – объем пластины. Так как в условии задачи не оговаривается вид диэлектрика, будем считать, что между пластинами А и В находится воздух или вакуум ε = 1.

С учетом принятых обозначений: = 2,68*10-7 Дж.

Задача №2. Две соединенные проводником пластины плоского конденсатора площадью S каждая, находятся на расстоянии d друг от друга (рис.1) во внешнем однородном электрическом поле, напряженность которого . Какую работу надо совершить, чтобы медленно сблизить пластины до расстояния d/2?

Решение. Так как пластины замкнуты между собой проводником, то их потенциалы равны, а значит, равна нулю напряженность поля в пространстве между пластинами. После сближения пластин в области пространства, заштрихованной на рис.2, появится электрическое поле, энергия которого равна: . Исходя из закона сохранения энергии, можно записать: A=W.

Ответ: https://pandia.ru/text/78/048/images/image022_22.jpg" align="left" width="176 height=117" height="117">Задача №3. В схеме, изображенной на рисунке 1, найдите количество теплоты, выделившееся в каждом резисторе при замыкании ключа. Конденсатор, емкостью С1 заряжен до напряжения U 1 U 2 . Сопротивления резисторов R 1 и R 2 .

Решение. Для рассматриваемой системы закон сохранения энергии имеет вид

0 = ΔW + Q или Q = Wнач - Wкон

Начальная энергия заряженных конденсаторов https://pandia.ru/text/78/048/images/image024_27.gif" width="87 height=23" height="23">..gif" width="52" height="23 src="> так как конденсаторы соединены параллельно. Таким образом

и Q = Wнач - Wкон = https://pandia.ru/text/78/048/images/image029_25.gif" width="109" height="24 src=">.gif" width="63 height=47" height="47">.gif" width="105 height=47" height="47">.jpg" align="left" width="170 height=136" height="136">Задача №4. Трем одинаковым конденсаторам емкостью С каждый сообщили заряды q 1 , q 2 и q 3 . Затем конденсаторы соединили так, как показано на рисунке. Найдите заряд каждого конденсатора после замыкания ключей.

Решение. Обкладки соединяемых конденсаторов являются замкнутой системой и для них выполняется закон сохранения электрического заряда.

.

Мысленно проведем вдоль цепочки конденсаторов единичный положительный заряд, вернув его в начальную точку. Работа сил электростатического поля по перемещению заряда по замкнутой траектории равна нулю. Значит

Решая уравнения, получаем выражения для зарядов

https://pandia.ru/text/78/048/images/image042_10.jpg" width="396" height="128">

Задача №2. Точечный заряд q находится на расстоянии L от безграничной проводящей плоскости. Найдите энергию взаимодействия этого заряда с зарядами, индуцированными на плоскости.

Задача №3. Две проводящие полуплоскости образуют прямой двугранный угол. Точечный заряд q находится на расстояниях и https://pandia.ru/text/78/048/images/image046_17.gif" width="13" height="13">и отпускают без начальной скорости. В ходе начавшихся колебаний стержень достигает горизонтального положения, после чего движется обратно, и процесс повторяется. Найдите заряд шарика. Ускорение свободного падения равно g .

Задача №8. Найдите объемную плотность энергии электрического поля вблизи бесконечной заряженной плоскости с поверхностной плотностью зарядов 10 нКл/м2. Объемная плотность энергии – энергия, приходящаяся на единицу объема.

Задача №9. Большая тонкая проводящая пластина площадью S и толщиной d помещена в однородное электрическое поле напряженностью Е. Какое количество теплоты выделиться, если поле мгновенно выключить? Какую минимальную работу надо совершить, чтобы вынуть пластину из поля?

Задача №10. На обкладках плоского конденсатора находятся заряды + q и – q . Площадь обкладки S , расстояние между ними d 0 . Какую работу надо совершить, чтобы сблизить обкладки до расстояния d ?

Задача №11. Внутри плоского конденсатора, площадь обкладки которого 200 см2 и расстояние между ними 1 см находится пластинка из стекла (ε = 5), целиком заполняющая промежуток между обкладками. Как изменится энергия конденсатора, если удалить эту пластинку? Решить задачу для случая 1) конденсатор все время подключен к источнику тока с напряжением 200 В. 2) конденсатор первоначально был присоединен к тому же источнику, затем его отключили, и только после этого удалили пластинку.

Задача №12. Плоский конденсатор заполнили диэлектриком и на пластины подали некоторую разность потенциалов. Энергия конденсатора при этом равна W = 2*10-5 Дж. После того, как конденсатор отключили от источника, диэлектрик вынули из конденсатора. Работа, которую надо было совершить для этого, равна А = 7*10-5 Дж. Найдите диэлектрическую проницаемость диэлектрика.

Задача №13. Стеклянная пластинка полностью заполняет пространство между обкладками плоского конденсатора, емкость которого в отсутствии пластинки 20 нФ. Конденсатор подключили к источнику тока с напряжением 100 В. Пластинку медленно без трения вынули из конденсатора. Найдите приращение энергии конденсатора и механическую работу против электрических сил при извлечении пластинки.

Задача №14. Конденсатор емкостью С несет на обкладках заряд q . Какое количество теплоты выделится в конденсаторе, если его заполнить веществом с диэлектрической проницаемостью ε?

Задача №15. Плоский конденсатор находится во внешнем электрическом поле напряженностью Е, перпендикулярной пластинам. На пластинах площадью S находятся заряды + q и – q . Расстояние между пластинами d . Какую минимальную работу надо совершить, чтобы поменять пластины местами? Расположить параллельно полю? Вынуть из поля?

Задача №16. Конденсатор емкостью С заряжен до напряжения U . К нему подключают точно такой же конденсатор. Сопротивление подводящих проводов равно R . Какое количество теплоты выделиться в проводах?

Задача №17. Два одинаковых плоских конденсатора емкостью С каждый соединяют параллельно и заряжают до напряжения U . Пластины одного из них медленно разводят на большое расстояние. Какая при этом совершается работа?

Задача №18. Два конденсатора емкостью С каждый, заряжены до напряжения U и соединены через резистор. Пластины одного конденсатора быстро раздвигают, так, что расстояние между ними увеличивается вдвое, а заряд на пластинах за время их перемещения не изменяется. Какое количество теплоты выделится в резисторе?

Задача №19. Конденсатор емкостью С1=1 мкФ зарядили до напряжения 300 В и подключили к незаряженному конденсатору С2 емкостью 2 мкФ. Как изменилась при этом энергия системы?

Задача №20. Два одинаковых плоских конденсатора емкостью С каждый присоединяют к двум одинаковым батареям с ЭДС Е. В какой-то момент времени один конденсатор отключают от батареи, а второй оставляют присоединенным. Затем медленно разводят обкладки обеих конденсаторов, уменьшая емкость каждого в n раз. Какая механическая работа совершается в каждом случае? Объясните полученный результат.

Задача №21. В схеме, изображенной на рис., найдите количество теплоты, выделившееся в каждом резисторе при замыкании ключа. Конденсатор, емкостью С1 заряжен до напряжения U 1 , а конденсатор емкостью С2 – до напряжения U 2 . Сопротивления резисторов R 1 и R 2 .

Задача №22. Два конденсатора емкостями С1 и С2 соединили последовательно и подключили к источнику тока с напряжением U . Затем конденсаторы отключили и включили параллельно так, что + одного конденсатора оказался подключенным к + другого. Какая при этом выделилась энергия?

Задача №23. В схеме приведенной на рис. , конденсатор емкостью С, зарядили до напряжения U . Какое количество энергии будет запасено в аккумуляторе с ЭДС ε после замыкания ключа? Какое количество теплоты выделится в резисторе?

Задача №24.

Задача №25. Какое количество тепла выделится в цепи при переключении ключа К из положения 1 в положение 2?

Задача №26. В электрической цепи, схема которой показана на рис., ключ К замкнут. Заряд конденсатора q = 2 мкКл, внутреннее сопротивление батареи r = 5 Ом, сопротивление резистора 25 Ом. Найдите ЭДС батареи, если при размыкании ключа К на резисторе выделяется количество теплоты Q = 20 мкДж.

Задача №27. В электрической цепи, схема которой показана на рис., ключ К замкнут. ЭДС батареи Е=24 В, ее внутреннее сопротивление r = 5 Ом, заряд конденсатора 2 мкКл. При размыкании ключа К на резисторе выделяется количество теплоты 20 мкДж. Найдите сопротивление резистора.

Задача №28. Свинцовая проволочка диаметром 0,3 мм плавится при пропускании через нее тока 1,8 А, а проволочка диаметром 0,6 мм – при токе 5 А. При каком токе разорвет цепь предохранитель, составленный из двух этих проволочек, соединенных параллельно?

Задача №29. В гирлянде для новогодней елки последовательно соединены двенадцать одинаковых лампочек. Как изменится мощность, потребляемая гирляндой, если в ней оставить только шесть лампочек?

Задача №30. Какой ток пойдет по подводящим проводам при коротком замыкании в цепи, если при поочередном включении двух электроплиток с сопротивлением R 1 = 200 Ом и R 2 = 500 Ом на них выделяется одинаковая мощность 200 Вт.

Задача №31. При прохождении постоянного электрического тока по участку АВ на резисторе сопротивлением R 2 выделяется тепловая мощность P 2 . Какая тепловая мощность выделяется на каждом из резисторов сопротивлениями R 1 и R 3 ?

Задача №32. Выполнение работ" href="/text/category/vipolnenie_rabot/" rel="bookmark">выполнения работы , как далеко расположен нужный объект, и т. п.

Для выполнения простейших измерений или расчетов в отсутствие необходимых инструментов иногда приходится прибегать к «подручным средствам». Такими «подручными средствами» могут служить кисти наших рук, сами руки. А определение «на глазок» длины предмета или расстояния до нужного объекта возможно методом сравнения с нашим ростом, длиной шага, размером обуви и т. д.

Задание 1 Измерьте с помощью обычной школьной линейки (или тетрадного листа в клеточку) все возможные параметры своей руки, которые могут помочь в определении размеров других предметов:

Длину самого короткого и самого длинного пальца руки,

Максимальный раствор ладони (расстояние от кончика мизинца до кончика большого пальца при полностью раскрытой ладони),

Максимальное расстояние от кончика указательного пальца до кончика большого пальца при полностью раскрытой ладони,

- «локоть» (расстояние от локтевого сустава до кончика среднего пальца лежащей на столе руки).

Запишите (для памяти) полученные значения на шпаргалку или в записную книжку. Они не однажды вам могут понадобиться.

Задание 2 (3 балла за задание в целом). Пользуясь только что полученными «ручными» мерками, оцените:

Длину и ширину столешницы вашего учебного стола,

Длину и ширину любого помещения,

Размеры рамки для фотографии.

Проверьте линейкой или сантиметром, правильность оценочных значений.

Задание 3 (1 балл). Зная свой рост или рост любого из присутствующих в помещении людей, оцените методом сравнения высоту потолка данного помещения в метрах.

Замечание. Если вам понравилось пользоваться «подручными» мерками, следует помнить, что их надо постоянно обновлять.

Задание 4 (1 балл). Оцените среднюю длину собственного шага (в см).

Задание 5 (5 баллов за задание в целом).

3. Сравните полученные значения скорости со скоростью передвижения известных вам живых существ.

4. Рассчитайте кинетическую энергию, которую вы развиваете во время бега и во время ходьбы.

Таблица 1. Справочные материалы

Ориентировочные значения максимальной скорости в животном мире (в км/ч)

Скорость

Скорость

Насекомые

Скорость

Млекопитающие

Скорость

Собака, волк

Ласточка

Стрекоза

Задание 6 (2 балла). На уроках физкультуры в школе одним из зачетных видов занятий является бег на определенное расстояние (чаще всего, это 60 м) за определенный промежуток времени. Зная длину дистанции и время, за которое вы пробегаете это расстояние, оцените среднюю скорость бега в спринтерском темпе. Выразите полученное значение средней скорости в км/ч.

Закон сохранения энергии является общим законом природы, следовательно, он применим и к явлениям, происходящим в электричестве. При рассмотрении процессов превращения энергии в электрическом поле рассматривают два случая:

  1. Проводники присоединены к источникам ЭДС, при этом постоянными являются потенциалы проводников.
  2. Проводники являются изолированными, что означает: заряды проводников неизменны.

Мы будем рассматривать первый случай.

Допустим, что у нас имеется система, состоящая из проводников и диэлектриков. Эти тела совершают малые и очень медленные перемещения. Температура тел поддерживается постоянной ($T=const$), для этого тепло или отводят (если оно выделяется) или подводят (при поглощении тепла). Диэлектрики у нас являются изотропными и мало сжимаемыми (плотность постоянна ($\rho =const$)). При заданных условиях внутренняя энергия тел, которая не связана с электрическим полем, остается неизменной. Помимо этого, диэлектрическая проницаемость ($\varepsilon (\rho ,\ T)$), зависящая от плотности вещества и его температуры, может считаться постоянной.

На любое тело, помещенное в электрическое поле, действуют силы. Иногда такие силы называют пондемоторными силами поля. При бесконечно малом перемещении тел пондемоторные силы выполняют бесконечно малую работу, которую обозначим $\delta A$.

Закон сохранения энергии для цепей постоянного тока содержащих ЭДС

Электрическое поле имеет определённую энергию. При перемещении тел электрическое поле между ними изменяется, значит, изменяется его энергия. Увеличение энергии поля при малом смещении тел обозначим как $dW$.

Если в поле движутся проводники, то изменяется их взаимная емкость. Для сохранения без изменения потенциалов проводников на них следует добавлять (или убирать с них) заряды. В таком случае каждый источник тока совершает работу, равную:

\[\varepsilon dq=\varepsilon Idt\ \left(1\right),\]

где $\varepsilon$ - ЭДС источника; $I$ - сила тока; $dt$ - время перемещения. В исследуемой системе тел возникают электрические токи, соответственно во всех частях системы будет выделяться тепло ($\delta Q$), которое по закону Джоуля - Ленца равно:

\[\delta Q=RI^2dt\ \left(2\right).\]

Следуя закону сохранения энергии, работа всех источников тока равна сумме механической работы сил поля, изменению энергии поля и количества теплоты Джоуля - Ленца:

\[\sum{\varepsilon Idt=\delta A+dW+\sum{RI^2dt\ \left(3\right).}}\]

При отсутствии движения проводников и диэлектриков ($\delta A=0;;\ dW$=0) вся работа источников ЭДС переходит в тепло:

\[\sum{\varepsilon Idt=\sum{RI^2dt\ \left(4\right).}}\]

Используя закон сохранения энергии, иногда можно рассчитать механические силы, действующие в электрическом поле проще, чем исследуя, как воздействует поле на отдельные части тела. При этом поступают следующим образом. Допустим, нам следует вычислить величину силы $\overline{F}$, которая действует на тело, находящееся в электрическом поле. Допускают, что рассматриваемое тело совершает малое перемещение $d\overline{r}$. В таком случае, работа силы $\overline{F}$ равна:

\[\delta A=\overline{F}d\overline{r}=F_rdr\ \left(5\right).\]

Далее находят все изменения энергии, которые вызваны перемещением тела. Затем из закона сохранения энергии получают проекцию силы${\ \ F}_r$ на направление перемещения ($d\overline{r}$). Если выбрать перемещения параллельные осям системы координат, то можно найти компоненты силы вдоль этих осей, следовательно, вычислить неизвестную силу по величине и направлению.

Примеры задач с решением

Пример 1

Задание. Плоский конденсатор частично погружен в жидкий диэлектрик (рис.1). Когда конденсатор заряжается, на жидкость в областях неоднородного поля действуют силы, при этом жидкость втягивается в конденсатор. Найдите силу ($f$) воздействия электрического поля на каждую единицу горизонтальной поверхности жидкости. Считайте, что конденсатор соединен с источником напряжения, напряжение $U$ и напряженность поля внутри конденсатора постоянны.

Решение. При увеличении столба жидкости между пластинами конденсатора на величину $dh$ работа силы $f$ равна:

где $S$ - горизонтальное сечение конденсатора. Изменение энергии электрического поля плоского конденсатора определим как:

Обозначим $b$ - ширину пластины конденсатора, тогда заряд, который дополнительно перейдет от источника, равен:

При этом работа источника тока:

\[\varepsilon dq=Udq=U\left(\varepsilon {\varepsilon }_0E-{\varepsilon }_0E\right)bdh\left(1.4\right),\]

\[\varepsilon =U\ \left(1.5\right).\]

Учитывая, что $E=\frac{U}{d}$Тогда формула (1.4) перепишется в виде:

\[\varepsilon dq=\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh\left(1.6\right).\]

Применяя закон сохранения энергии в цепи постоянного тока, если она имеет источник ЭДС:

\[\sum{\varepsilon Idt=\delta A+dW+\sum{RI^2dt\ \left(1.7\right)}}\]

для рассматриваемого случая запишем:

\[\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh=Sfdh+\left(\frac{ее_0E^2}{2}-\frac{е_0E^2}{2}\right)Sdh\ \left(1.8\right).\]

Из полученной формулы (1.8) найдем $f$:

\[\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)=f+\left(\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}\right)\to f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}.\]

Ответ. $f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}$

Пример 2

Задание. В первом примере мы считали сопротивления проводов бесконечно малыми. Как изменилась бы ситуация, если сопротивление считать конечной величиной, равной R?

Решение. Если предполагать, что сопротивление проводов не мало, то при объединении в законе сохранения (1.7) слагаемых: $\varepsilon Idt\ $ и $RI^2dt$, мы получим, что:

\[\varepsilon Idt=RI^2dt=\left(\varepsilon -IR\right)Idt=UIdt.\]

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Закон сохранения энергии определяет в самом общем виде энергетический баланс при всевозможных изменениях в любой системе. Запишем его следующим образом:

где A внеш - работа, совершенная над рассматриваемой системой внешними силами, ΔW - изменение энергии системы, Q - количество теплоты, выделяемое в системе. Договоримся, что если A внеш > 0, то над системой совершают положительную работу, а если A внеш < 0, положительную работу совершает система; если ΔW > 0, то энергия системы увеличивается, а если ΔW < 0, энергия уменьшается; наконец, если Q > 0, то в системе выделяется тепло, а если Q < 0, тепло системой поглощается.

В этой статье мы рассмотрим, как закон сохранения энергии «работает» в электростатике. В общем случае электростатическая система содержит взаимодействующие между собой заряды, находящиеся в электрическом поле.

Рассмотрим каждое слагаемое в уравнении (1) по отдельности.

Начнем с энергии. Энергия взаимодействия зарядов выражается через характеристики электрического поля этой системы зарядов. Так, например, энергия заряженного конденсатора емкостью C задается известным выражением

(2)

где q - заряд обкладок, U - напряжение между ними. Напомним, что конденсатор - это система двух проводников (обкладок, пластин), обладающая следующим свойством: если с одной обкладки на другую перенести заряд q (т. е. одну обкладку зарядить зарядом + q , а другую –q ), то все силовые линии созданного таким образом поля будут начинаться на одной (положительно заряженной) обкладке и заканчиваться на другой. Поле конденсатора существует только внутри него.

Энергию заряженного конденсатора можно представить также как энергию поля, локализованного в пространстве между пластинами с плотностью энергии где E - напряженность поля. В сущности, именно этот факт дает основание говорить о поле как об объекте, реально существующем, - у этого объекта есть плотность энергии. Но надо помнить, что это просто эквивалентный способ определения энергии взаимодействия зарядов (которую теперь мы называем энергией электрического поля). Таким образом, мы можем считать энергию конденсатора как по формулам (2), так и по формуле

(3)

где V - объем конденсатора. Последней формулой легко пользоваться, конечно, только в случае однородного поля, но представление энергии в такой форме очень наглядно, а потому удобно.

Конечно, кроме энергии взаимодействия зарядов (энергии электрического поля) в энергию системы может входить и кинетическая энергия заряженных тел, и их потенциальная энергия в поле тяжести, и энергия пружин, прикрепленных к телам, и т. п.

Теперь о работе внешних сил. Помимо обычной механической работы A мех (например, по раздвиганию пластин конденсатора), для электрической системы можно говорить о работе внешнего электрического поля. Например, о работе батареи, заряжающей или перезаряжающей конденсатор. Задача батареи - создать фиксированную, присущую данному источнику разность потенциалов между теми телами, к которым она присоединена. Делает она это единственно возможным способом - забирает заряд от одного тела и передает его другому. Источник никогда не создает заряды, а только перемещает их. Общий заряд системы при этом сохраняется - это один из краеугольных законов природы.

В источниках разных конструкций электрическое поле, необходимое для перемещения зарядов, создают различные «механизмы». В батареях и аккумуляторах - это электрохимические реакции, в динамомашинах - электромагнитная индукция. Существенно, что для выбранной системы зарядов (заряженных тел) это поле - внешнее, стороннее. Когда через источник с ЭДС от отрицательного полюса к положительному протекает заряд Δq , сторонние силы совершают работу

При этом если Δq > 0, то A бат > 0 - батарея разряжается; если же Δq < 0, то A бат < 0 - батарея заряжается и в ней накапливается химическая (или магнитная) энергия.

Наконец, о выделении тепла. Заметим только, что это джоулево тепло, т.е. тепло, связанное с протеканием тока через сопротивление.

Теперь обсудим несколько конкретных задач.

Задача 1 . Два одинаковых плоских конденсатора емкостью C каждый присоединены к двум одинаковым батареям с ЭДС . В какой-то момент один конденсатор отключают от батареи, а другой оставляют присоединенным. Затем медленно разводят пластины обоих конденсаторов, уменьшая емкость каждого в n раз. Какая механическая работа совершается в каждом случае?

Если процесс изменения заряда на конденсаторе осуществляется все время медленно, тепло выделяться не будет. Действительно, если через резистор сопротивлением R протек заряд Δq за время t , то на резисторе за это время выделится количество теплоты

При достаточно больших t количество теплоты Q может оказаться сколь угодно малым.

В первом случае фиксирован заряд на пластинах (батарея отключена), равный Механическая работа определяется изменением энергии конденсатора:

Во втором случае фиксирована разность потенциалов на конденсаторе и работает батарея, поэтому

Через батарею протекает заряд

Этот заряд меньше нуля, значит, батарея заряжается и ее работа

Энергия поля в конденсаторе уменьшается:

Таким образом,

Зарядка батареи происходит за счет работы по раздвиганию пластин и за счет энергии конденсатора.

Заметим, что слова про раздвигание пластин существенной роли не играют. Такой же результат будет при любых других изменениях, приводящих к уменьшению емкости в n раз.

Задача 2 . В схеме, изображенной на рисунке, найдите количество теплоты, выделившееся в каждом резисторе после замыкания ключа. Конденсатор емкостью C 1 заряжен до напряжения U 1 , а конденсатор емкостью C 2 - до напряжения U 2 . Сопротивления резисторов R 1 и R 2 .

Закон сохранения энергии (1) для данной системы имеет вид

Начальная энергия конденсаторов равна

Для определения энергии в конечном состоянии воспользуемся тем, что суммарный заряд конденсаторов не может измениться. Он равен (для случаев, когда конденсаторы были соединены одноименно или разноименно заряженными пластинами соответственно). После замыкания ключа этим зарядом оказывается заряжен конденсатор емкостью C 1 + C 2 (конденсаторы емкостями C 1 и C 2 соединены параллельно). Таким образом,

и

Как и должно быть, в обоих случаях выделяется тепло - есть джоулевы потери. Замечательно, что выделившееся количество теплоты не зависит от сопротивления цепи - при малых сопротивлениях текут большие токи и наоборот.

Теперь найдем, как количество теплоты Q распределяется между резисторами. Через сопротивления R 1 и R 2 в каждый момент процесса перезарядки текут одинаковые токи, значит, в каждый момент мощности, выделяемые на сопротивлениях, равны

и

Следовательно,

Кроме того, . Поэтому окончательно

Задача 3 . В схеме на рисунке 2 конденсатор емкостью C заряжен до напряжения U . Какое количество химической энергии запасется в аккумуляторе с ЭДС после замыкания ключа? Какое количество теплоты выделится в резисторе?

Первоначальный заряд на конденсаторе . После окончания перезарядки заряд на конденсаторе станет равным . Протекший через батарею заряд в случае, когда к минусу батареи подключена отрицательно заряженная обкладка конденсатора, будет равен

В противном случае и при этом аккумулятор будет разряжаться (Δq > 0). А в первом случае при аккумулятор заряжается (Δq < 0), и количество химической энергии, запасенной в аккумуляторе после замыкания ключа, равно работе батареи:

Теперь запишем закон сохранения энергии (1) –

– и найдем выделившееся количество теплоты:

Задача 4 . Плоский конденсатор находится во внешнем однородном поле с напряженностью , перпендикулярной пластинам. На пластинах площадью S распределены заряды +q и –q . Расстояние между пластинами d . Какую минимальную работу надо совершить, чтобы поменять пластины местами? Расположить параллельно полю? Вынуть из поля?

Работа будет минимальной, когда процесс проводится очень медленно - при этом не выделяется тепло. Тогда, согласно закону сохранения энергии,

Чтобы найти ΔW , воспользуемся формулой (3). Поле между пластинами представляет собой суперпозицию поля данного плоского конденсатора –

– и внешнего поля .

При перемене пластин местами поле меняется на –, а поле снаружи не меняется, т. е. изменение энергии системы связано с изменением ее плотности между пластинами конденсатора:

Если направления векторов и были одинаковы, то плотность энергии между пластинами уменьшилась после перемены пластин местами, а если направления были противоположны, то плотность энергии увеличилась. Таким образом, в первом случае - конденсатор хочет сам развернуться и его надо удерживать (A < 0), а во втором случае

Когда пластины конденсатора расположены параллельно полю и перпендикулярны друг другу. Энергия поля внутри конденсатора в этом случае равна . Тогда

Когда конденсатор вынули из поля, в том месте, где он был, поле стало , а в нем самом теперь поле , т.е. ΔW и A min оказываются такими же, как и в предыдущем случае.

Задача 5. Конденсатор емкостью С без диэлектрика заряжен зарядом q . Какое количество теплоты выделится в конденсаторе, если его заполнить веществом с диэлектрической проницаемостью ε? То же, но конденсатор присоединен к батарее с ЭДС .

При заливании диэлектрика емкость конденсатора увеличилась в ε раз.

В первом случае фиксирован заряд на пластинах, внешних сил нет, и закон сохранения энергии (1) имеет вид

Тепло выделяется за счет уменьшения энергии взаимодействия зарядов.

Во втором случае есть работа батареи и фиксировано напряжение на конденсаторе:

Упражнения

1. Два одинаковых плоских конденсатора емкостью С каждый соединены параллельно и заряжены до напряжения U . Пластины одного из конденсаторов медленно разводят на большое расстояние. Какая при этом совершается работа?

2. Два конденсатора, каждый емкостью С , заряжены до напряжения U и соединены через резистор (рис. 4). Пластины одного из конденсаторов быстро раздвигают, так что расстояние между ними увеличивается вдвое, а заряд на пластинах за время их перемещения не изменяется. Какое количество теплоты выделится в резисторе?

3. Плоский воздушный конденсатор присоединен к батарее с ЭДС . Площадь пластин S , расстояние между ними d . В конденсаторе находится металлическая плита толщиной d 1 , параллельная пластинам (рис. 5). Какую минимальную работу нужно затратить, чтобы удалить плиту из конденсатора?

4. Большая тонкая проводящая пластина площадью S и толщиной d помещена в однородное электрическое поле с напряженностью , перпендикулярной поверхности пластины. Какое количество теплоты выделится в пластине, если поле мгновенно выключить? Какую минимальную работу надо совершить, чтобы удалить пластину из поля?

5. Одна из пластин плоского конденсатора подвешена на пружине (рис. 6). Площадь каждой пластины S , расстояние между ними в начальный момент d . Конденсатор на короткое время подключили к батарее, и он зарядился до напряжения U . Какой должна быть минимальная жесткость пружины, чтобы не произошло касание пластин? Смещением пластин за время зарядки пренебречь.

Ответы .

1. (весь заряд оказывается на конденсаторе, пластины которого не раздвигали).

2. (в первый момент после разведения пластин замкнутыми друг на друга оказываются конденсатор емкостью С с напряжением U и конденсатор емкостью С /2 с напряжением 2U ).

3. (минимальная работа по удалению плиты равна разности изменения энергии конденсатора и работы батареи).

4. (сразу после выключения внешнего поля в пластине есть поле поляризационных зарядов, напряженность которого равна Е\ удаление пластины из поля эквивалентно созданию поля с напряженностью Е в объеме пластины).

5. (результат получается из закона сохранения энергии и из условия равновесия пластины ).

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил


Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .

Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = m ɡ h ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - ( E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

E k = E k 2 - E k 1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Е k 1 + Е п1 = Е k 2 + Е п2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2 ,
где E k1 , E п1 - кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2 - соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

Размер: px

Начинать показ со страницы:

Транскрипт

1 Тренировочный минимум по физике ФИЗИКА Тема Закон сохранения энергии в электрических цепях ВОПРОСЫ Рассматриваем электрические схемы, которые могут содержать батареи, резисторы, конденсаторы и катушки индуктивности Формулы для энергии конденсатора и катушки индуктивности Сформулировать закон сохранения энергии для электрической цепи Как определяется работа батареи? Когда она положительна? Когда она отрицательна? 4 На каких электрических элементах выделяется теплота? 5 Сформулировать Закон Джоуля-Ленца 6 Как определяется теплота Q, выделяющаяся на резисторе сопротивлением за любое время, если через него протекает ток I t? 7 Какой формулой определяется скорость изменения энергии конденсатора? 8 Какой формулой определяется скорость изменения энергии катушки индуктивности? ЗАДАЧИ Всевозможные задачи для схемы класса 5 рис Задача В схеме, показанной на рис, все элементы можно считать идеальными Параметры элементов указаны на рисунке До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время t, а затем размыкают) Чему равен ток через катушку сразу после размыкания ключа?) Какую работу совершит источник за все время опыта?) Какое количество теплоты выделится в схеме за все время опыта? 4) Какое количество теплоты выделится в схеме за время t? Задача В электрической схеме, изображённой на рис, все элементы можно считать идеальными До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что за всё время опыта (те за время, пока ключ был замкнут и за время, пока ключ был разомкнут) в схеме выделилось количество теплоты Q Найдите время Задача В электрической схеме, изображённой на рис, все элементы можно считать идеальными До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что за время, пока ключ был замкнут, и за время, пока ключ был разомкнут, в схеме выделились равные количества теплоты Какой заряд протёк через источник за время, пока ключ был замкнут? Какое количество теплоты выделилось в схеме за всё время опыта?

2 Задача 4 В электрической схеме, приведённой на рис, все элементы идеальные, ключ K разомкнут Индуктивность катушки, сопротивление резистора, ЭДС батареи Ключ K замыкают За первые секунд после замыкания ключа K батарея совершила работу на 5% меньшую, чем работа, которую она совершила за последующие секунд) Определить время) Какое количество теплоты выделится в схеме за время 4 после замыкания ключа K? Задача 5 В электрической схеме, изображённой на рис, все элементы можно считать идеальными Параметры элементов указаны на рисунке До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что после размыкания ключа в цепи выделилось в два раза больше теплоты, чем при замкнутом ключе Найти отношение заряда, протёкшего через источник при замкнутом ключе, к заряду, протёкшему через резистор после размыкания ключа Задача 6 В электрической схеме, изображённой на рис, все элементы можно считать идеальными Параметры элементов указаны на рисунке До замыкания ключа ток в цепи отсутствовал Ключ K замыкают на некоторое время, а затем размыкают Оказалось, что заряд, протёкший через катушку при замкнутом ключе, в 4 раза больше заряда, протёкшего через катушку после размыкания ключа Определить время Найти отношение теплоты, выделившейся в цепи после размыкания ключа, к теплоте, выделившейся в цепи при замкнутом ключе Задача 7 Электрическая цепь состоит из идеальной батарейки с ЭДС, катушки индуктивностью, конденсатора ёмкостью C и резистора с неизвестным сопротивлением (рис справа) Ключ K замыкают на время, а затем размыкают За время, пока ключ был замкнут, через резистор протёк заряд q) Какое количество теплоты выделилось в цепи за время, пока ключ был замкнут?) Какое количество теплоты выделилось в цепи после размыкания ключа? Схемы - классов Задача 8 В электрической цепи, изображённой на рис слева все элементы идеальные Конденсатор первоначально не заряжен, ключ K разомкнут Ключ K замыкают, а затем размыкают в момент, когда напряжение на конденсаторе становится равным Известно, что пока ключ K был замкнут, через резистор сопротивлением протёк заряд 6 C Сколько теплоты выделилось в схеме, пока ключ K был замкнут? Задача 9 Какое количество теплоты выделится на резисторе в схеме, изображённой на рис справа, после перемещения ключа K из положения в положение? Внутренним сопротивлением батареи пренебречь Задача В электрической цепи, изображённой на рис слева все элементы идеальные Конденсатор первоначально заряжен до напряжения, ключ K разомкнут Ключ K замыкают) Определить изменение энергии конденсатора) Определить работу, которую совершит батарея? В каком состоянии будет находиться батарея?) Какое количество теплоты выделится в схеме? 4) Чему равна наибольшая скорость изменения энергии конденсатора (наибольшая по модулю)?

3 Задача В электрической схеме, изображённой на рис справа, в начальный момент ключ K замкнут После размыкания ключа на резисторе выделяется количество теплоты Q) Какое количество теплоты выделится на резисторе?) Чему равна ЭДС батареи? Сопротивления, и и индуктивность катушки известны Внутренним сопротивлением батареи пренебречь Задача В схеме, изображенной на рис слева, при разомкнутом ключе K конденсатор ёмкостью C заряжен до напряжения U, а конденсатор ёмкостью C до напряжения U Ключ K замыкают) Чему будет равен ток в цепи сразу после замыкания ключа K (указать направление)?) Определить скорость изменения энергии конденсатора ёмкостью C сразу после замыкания ключа K?) Определить величину и знак заряда левой обкладки конденсатора ёмкостью C в установившемся режиме? 4) Какой заряд протечёт через резистор сопротивлением (указать направление)? 5) Найти изменение энергии конденсатора ёмкостью C? 6) Какое количество теплоты выделится в схеме? 7) Какое количество теплоты выделится на резисторе сопротивлением? Задача В цепи, показанной на рис справа, конденсатор ёмкостью C заряжен до напряжения U, а конденсатор ёмкостью C до напряжения U (рис справа) Одноимённо заряженные обкладки соединены резистором сопротивлением Ключ K замыкают на некоторое время, а затем размыкают) Найти ток в цепи сразу после замыкания ключа K (указать направление)) Какое количество теплоты выделилось в цепи, если в момент размыкания ключа K ток в цепи был в раза меньше начального? Задача 4 В цепи, показанной на рис слева, все элементы идеальные В начальный момент времени ключи K и K разомкнуты, конденсаторы не заряжены Ключи одновременно замыкают) Найти начальный ток через каждую из батарей) Определить заряды конденсаторов в установившемся состоянии) Найти суммарную работу батарей 4) Какое количество теплоты выделится во всей схеме после замыкания ключей? Считать, что и Задача 5 Электрическая цепь состоит из батарейки с ЭДС и внутренним сопротивлением r, конденсатора ёмкостью C и резистора сопротивлением 5r Ключ K замыкают, а затем размыкают в момент, когда токи через конденсатор и резистор сравниваются по величине) Какую мгновенную мощность развивает источник непосредственно перед размыканием ключа?) Какое количество теплоты выделится в схеме после размыкания ключа?

4 Задача 6 В электрической схеме, представленной на рис слева, все элементы идеальные Ключ K первоначально разомкнут, токов в цепи нет Ключ K замыкают Известно, что за время пока в цепи устанавливались токи, в цепи выделилось количество теплоты Q Определить величины зарядов, протёкших через каждую из катушек за это время Задача 7 Электрическая цепь состоит из катушки индуктивностью, резистора сопротивлением, батарейки с ЭДС и неизвестным внутренним сопротивлением (рис*) Ключ K на некоторое время замыкают, а затем размыкают За время, пока ключ был замкнут, в цепи выделилось количество теплоты Q, а после размыкания ключа в цепи выделилось количество Q) Найдите ток через катушку в момент размыкания ключа) Найдите заряд, протекший через катушку за время, пока ключ был замкнут Задача 8 Электрическая цепь состоит из катушки индуктивностью, резистора сопротивлением, батарейки с ЭДС и неизвестным внутренним сопротивлением (рис слева) Ключ K на некоторое время замыкают, а затем размыкают За время, пока ключ был замкнут, через источник протек заряд q, а в катушке запаслась энергия W) Найти количество теплоты, выделившееся в цепи, пока ключ был замкнут) Какой заряд протёк через катушку при замкнутом ключе? Задача 9 В электрической схеме, предсталенной на рис справа, ключ K замкнут Ключ K размыкают После этого батарея с ЭДС совершила работу A, а количество теплоты, выделившееся в цепи, равно Q) Найти ёмкость конденсатора C) Найти индуктивность катушки ЭДС батарей и сопротивления резисторов считать заданными Считать, что Задача Электрическая цепь состоит из идеальной батарейки с ЭДС, плоского конденсатора и резистора сопротивлением В конденсатор параллельно обкладкам вставлена диэлектрическая пластина, занимающая половину объёма конденсатора (рис слева) Диэлектрическая проницаемость диэлектрика равна Ёмкость воздушного конденсатора равна C Пластину быстро вынимают) Какую механическую работу A мех следует совершить, чтобы быстро вынуть пластину из конденсатора?) Какое количество теплоты Q выделится в схеме после того, как вынули пластину? Задача Электрическая цепь состоит из идеальной батарейки с ЭДС, плоского конденсатора и резистора сопротивлением В конденсатор параллельно обкладкам вставлена проводящая пластина, занимающая половину объёма конденсатора (рис справа) Ёмкость воздушного конденсатора равна C Пластину быстро вынимают) Какую механическую работу A мех следует совершить, чтобы быстро вынуть пластину из конденсатора?) Какое количество теплоты Q выделится в схеме после того, как вынули пластину?

5 Энергия конденсатора: W C CU qu q C ОТВЕТЫ ВОПРОСЫ I ФI Ф Энергия катушки: W, где Ф магнитный поток, пронизывающий катушку Работа A Б всех батарей, включенных в цепь, идёт на выделение теплоты Q в электрической схеме и на изменение W энергии этой схемы: AБ Q W Энергия схемы равна сумме энергий всех конденсаторов и всех катушек индуктивности AБ q*, где q * модуль протёкшего заряда через батарею Работа батареи положительна (ставится знак «+»), если батарейка находится в рабочем режиме, и отрицательна (ставится знак), если батарейка находится в состоянии перезарядки 4 Только на резисторах 5 Если через резистор сопротивлением протекает постоянный ток I, то количество теплоты, выделяющееся U за время, равно Q I U I, где U I U t 6 Q I t t t U t I tt, где суммирование ведётся по всем малым отрезкам времени t за промежуток времени W t U t I t P t, где знак «+» ставится, если конденсатор заряжается, а знак ставится, если 7 C C C C конденсатор разряжается 8 W t U t I t, где U t t I t I t ЗАДАЧИ) t) t Задача t) t t 4) t Задача Задача Q 4)) 4) 4C) 6 4) Задача 4 Задача 5 8)) Q4 5 5 Задача 6 Задача 7) 8 Q) 4 q Q) Q q) Q C Задача 8 Задача 9 4 C 9 C Задача C, батарея будет находиться в состоянии перезарядки) C q C, наибольшая скорость изменения энергии конденсатора будет в момент сразу после замыкания ключа

6 Q) Q Q) Задача Задача U) (против часовой стрелки) U) (знак «минус» показывает, что энергия конденсатора уменьшается в данный момент времени)) 4 CU 4) 9 CU (против часовой стрелки) 4 5) 45 CU 6) 7 8 CU 7) 9 4 CU) U) CU Задача Задача 4) I и I 7 5) qc C, qc C и q C C 6 74) AБ C) Q C 6 Задача 5 5)) 7r 98 C Задача 6 Q 9 q 4 8 и Q q 4 Q))) q W) Q Q Q q W A 8) C) Q A 9 4)) Aмех Aмех 8 C) C) Q 8 Q C C Задача 7 Задача 8 Задача 9 Задача Задача Составитель: МА Пенкин преподаватель ФЗФТШ при МФТИ


И. В. Яковлев Материалы по физике MathUs.ru Количество теплоты. Конденсатор В данном листке рассматриваются задачи на расчёт количества теплоты, которое выделяется в цепях, состоящих из резисторов и конденсаторов.

И. В. Яковлев Материалы по физике MathUs.ru Количество теплоты. Катушка В данном листке рассматриваются задачи на расчёт количества теплоты, которое выделяется в цепях, состоящих из резисторов и катушек

И. В. Яковлев Материалы по физике MathUs.ru Содержание Соединения конденсаторов 1 Всероссийская олимпиада школьников по физике................... 3 2 Московская физическая олимпиада...........................

005-006 уч. год., кл. Физика. Электростатика. Законы постоянного тока. Контрольные вопросы. По какой причине силовые линии электрического поля не могут пересекаться?. В двух противоположных вершинах квадрата

И. В. Яковлев Материалы по физике MathUs.ru Содержание Диод и конденсаторы 1 Идеальный диод...................................... 1 2 Неидеальный диод..................................... 2 1 Идеальный

И. В. Яковлев Материалы по физике MathUs.ru Электромагнитные колебания Задача 1. (МФО, 2014, 11) Заряженный конденсатор начинает разряжаться через катушку индуктивности. За две миллисекунды его электрический

5. Электрические колебания Вопросы. Дифференциальное уравнение, описывающее свободные колебания заряда конденсатора в колебательном контуре, имеет вид Aq + Bq = 0, где A и B известные положительные постоянные.

Методика обучения решению разноуровневых задач на примере темы Конденсаторы. От простого к сложному. Сокалина Александра Николаевна МБОУ СОШ 6 Линия 1 Актуализация знаний Конденсатор; Емкость конденсатора

И. В. Яковлев Материалы по физике MathUs.ru Самоиндукция Пусть через катушку протекает электрический ток I, изменяющийся со временем. Переменное магнитное поле тока I порождает вихревое электрическое поле,

Задания А24 по физике 1. На графике показана зависимость от времени силы переменного электрического тока I, протекающего через катушку индуктивностью 5 мгн. Чему равен модуль ЭДС самоиндукции, действующей

Занятие 8. Колебательный контур. Сохранение энергии. 1. В идеальном колебательном контуре максимальный ток в цепи равен I 0. Найдите максимальный заряд на конденсаторе с ёмкостью C, если индуктивность

И. В. Яковлев Материалы по физике MathUs.ru Подвижная пластина Задача 1. (МФТИ, 2004) В схеме, представленной на рисунке, батарея с постоянной ЭДС E подключена через резистор к двум проводящим одинаковым

Потенциал 1.60. В однородном электрическом поле с напряженностью Е = 1 кв/м перемещают заряд q = 50 нкл на расстояние l = 12 см под углом = 60 0 к силовым линиям. Определите работу А поля при перемещении

С1.1. На фотографии изображена электрическая цепь, состоящая из резистора, реостата, ключа, цифровых вольтметра, подключенного к батарее, и амперметра. Используя законы постоянного тока, объясните, как

εдемонстрационный вариант ЕГЭ 2019 г. задание 18. Электрическая цепь на рисунке состоит из источника тока с ЭДС ε и внутренним сопротивлением r и внешней цепи из двух одинаковых резисторов сопротивлением

В схеме на рисунке сопротивление резистора и полное сопротивление реостата равны R, ЭДС батарейки равна E, её внутреннее сопротивление ничтожно (r = 0). Как ведут себя (увеличиваются, уменьшаются, остаются

14. ЭЛЕКТРОЕМКОСТЬ. КОНДЕНСАТОРЫ 14.1 Что называется электроемкостью уединенного проводника? 14.2 В каких единицах измеряется электроемкость? 14.3 Как вычисляется электроемкость уединенной сферы, проводящего

Решения и критерии оценивания Задача 1 Колесо обозрения радиусом R = 60 м вращается с постоянной угловой скоростью в вертикальной плоскости, совершая полный оборот за время T = 2 мин. В момент, когда пол

Колебательный контур состоит из катушки индуктивности и конденсатора. В нём наблюдаются гармонические электромагнитные колебания с периодом Т = 5 мс. В начальный момент времени заряд конденсатора максимален

Можаев Виктор Васильевич Кандидат физико-математических наук, доцент кафедры общей физики Московского физико-техническиго института (МФТИ). Нелинейные элементы в электрических цепях В статье на конкретных

Олимпиада «Физтех» по физике 217 Класс 11 Билет 11-3 Шифр 1. На наклоненной под углом (cos 3/ 4) к горизонту поверхности лежит брусок, прикрепленный к упругой невесомой и достаточно длинной пружине (см.

Занятие 5. Конденсаторы.. Как изменится емкость плоского воздушного конденсатора, если площадь обкладок уменьшить в раза, а расстояние между ними увеличить в раза?. Проводящий шар с зарядом q имеет потенциал

Физика 15 Можаев Виктор Васильевич Кандидат физико-математических наук, доцент кафедры общей физики Московского физико-технического института (МФТИ), член редколлегии журнала «Квант» Переходные процессы

И. В. Яковлев Материалы по физике MathUs.ru Самоиндукция Темы кодификатора ЕГЭ: самоиндукция, индуктивность, энергия магнитного поля. Самоиндукция является частным случаем электромагнитной индукции. Оказывается,

На рисунке показана цепь постоянного тока. Внутренним сопротивлением источника тока можно пренебречь. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (

Домашнее задание по теме: «Электрические колебания» Вариант. В колебательном контуре индуктивность катушки L = 0, Гн. Величина тока изменяется по закону I(t) = 0,8sin(000t + 0,3), где t время в секундах,

«ЗАКОНЫ ПОСТОЯННОГО ТОКА». Электрическим током называют упорядоченное направленное движение заряженных частиц. Для существования тока необходимы два условия: Наличие свободных зарядов; Наличие внешнего

Занятие 19 Постоянный ток. Соединения проводников Задача 1 Перенос вещества происходит в случае прохождения электрического тока через: 1) Металлы и полупроводники 2) Полупроводники и электролиты 3) Газы

РАБОТА 4 ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЦЕПИ, СОДЕРЖАЩЕЙ РЕЗИСТОР И КОНДЕНСАТОР Цель работы: изучение закона изменения напряжения при разрядке конденсатора, определение постоянной времени R-цепи и

Работа электрического тока, мощность, закон Джоуля Ленца 1. Чему равно время прохождения тока силой 5 А по проводнику, если при напряжении на его концах 120 В в проводнике выделяется количество теплоты,

Электрические колебания Примеры решения задач Пример В схеме изображенной на рисунке ключ первоначально находившийся в положении в момент времени t переводят в положение Пренебрегая сопротивлением катушки

Физика. 0 класс. Демонстрационный вариант (90 минут) Диагностическая тематическая работа по подготовке к ЕГЭ по ФИЗИКЕ Физика. 0 класс. Демонстрационный вариант (90 минут) Часть К заданиям 4 даны четыре

Олимпиада «Физтех» по физике 7 Класс Билет -3 Шифр (заполняется секретарём) На наклоненной под углом (cos 3/ 4) к горизонту поверхности лежит брусок прикрепленный к упругой невесомой и достаточно длинной

Электродинамика 1. При подключении резистора с неизвестным сопротивлением к источнику тока с ЭДС 10 В и внутренним сопротивлением 1 Ом напряжение на выходе источника тока равно 8 В. Чему равна сила тока

Физика. 0 класс. Демонстрационный вариант 3 (90 минут) Диагностическая тематическая работа 3 по подготовке к ЕГЭ по ФИЗИКЕ по теме «Электродинамика» (электростатика, постоянный ток и магнитное поле тока)

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЁМКОСТИ КОНДЕНСАТОРА И БАТАРЕИ КОНДЕНСАТОРОВ Выполнил

Вариант 1 1. Колебательный контур состоит из катушки индуктивностью 0,2 мгн и конденсатора площадью пластин 155 см 2, расстояние между которыми 1,5 мм. Зная, что контур резонирует на длину волны 630 м,

Ёмкость. Конденсаторы Вариант 1 1. Определите радиус шара, обладающего ѐмкостью 1 пф. 3. При введении в пространство между пластинами заряженного воздушного конденсатора диэлектрика напряжение на конденсаторе

И. В. Яковлев Материалы по физике MthUs.ru Правила Кирхгофа В статье «ЭДС. Закон Ома для полной цепи» мы вывели закон Ома для неоднородного участка цепи (то есть участка, содержащего источник тока): ϕ

С1.1. Около небольшой металлической пластины, укрепленной на изолирующей подставке, подвесили на шелковой нити легкую металлическую незаряженную гильзу. Когда пластину подсоединили к клемме высоковольтного

1 Государственное бюджетное общеобразовательное учреждение Средняя общеобразовательная школа 447 Санкт-Петербург, Курортный район, п. Молодежное Решение задач уровня «С» ЕГЭ по физике «Расчет сложных электрических

Отложенные задания (25) В области пространства, где находится частица с массой 1 мг и зарядом 2 10 11 Кл, создано однородное горизонтальное электрическое поле. Какова напряжённость этого поля, если из

Электричество и магнетизм, часть 2 1. Конденсатор колебательного контура подключен к источнику постоянного напряжения. Графики и представляют зависимость от времени t физических величин, характеризующих

18.Электродинамика (установление соответствия между графиками и физическими величинами между физическими величинами) 1.Конденсатор, на который подано напряжение U, зарядился до максимального заряда q,

Мастер-класс «Электродинамика. Постоянный ток. Работа и мощность тока». 1. По проводнику течёт постоянный электрический ток. Величина заряда, проходящего через проводник, возрастает с течением времени

Задание 1. Установите соответствие между физическими величинами, описывающими протекание постоянного тока через резистор, и формулами для их расчёта. В формулах использованы обозначения: R сопротивление

Лекц ия 26 Закон Ома для цепи переменного тока Вопросы. Индуктивность и емкость в цепи переменного тока. Метод векторных диаграмм. Закон Ома для цепи переменного тока. Резонанс в последовательной и параллельной

1. Два положительных заряда q 1 и q 2 находятся в точках с радиус-векторами r 1 и r 2. Найти отрицательный заряд q 3 и радиус-вектор r 3 точки, в которую его надо поместить, чтобы сила, действующая на

С1.1. На рисунке приведена электрическая цепь, состоящая из гальванического элемента, реостата, трансформатора, амперметра и вольтметра. В начальный момент времени ползунок реостата установлен посередине

Электростатика Закон Кулона F 4 r ; F r r 4 r где F - сила взаимодействия точечных зарядов q и q ; - E диэлектрическая проницаемость среды; Е напряженность электростатического поля в вакууме; Е напряженность

Решения задач заключительного этапа олимпиады «Высшая проба» по электронике, 04/05 учебный год класс Для измерения силы тока и падения напряжения в личных цепях электронных схем применяют амперметры и

С1 «ПОСТОЯННЫЙ ТОК» На рисунке показана электрическая цепь, содержащая источник тока (с отличным от нуля внутренним сопротивлением), два резистора, конденсатор, ключ К, а также амперметр и идеальный вольтметр.

Региональная контрольная работа по физике (профильный уровень). СПЕЦИФИКАЦИЯ Каждый вариант работы состоит из двух частей и включает в себя 5 заданий, различающихся формой и уровнем сложности. Часть 1

1 Постоянный электрический ток Справочные сведения. ОПРЕДЕЛЕНИЕ СИЛЫ ТОКА Пусть через некоторую поверхность, площадь которой S, перпендикулярно ей, за время проходит заряд q. Тогда силой тока называется

Вариант 1 При выполнении заданий части 1 запишите номер выполняемого задания, а затем номер выбранного ответа или ответ. Единицы физических величин писать не нужно. 1. По проводнику течѐт постоянный электрический

ДА Ивашкина, «Расчет параметров процессов, происходящих в цепях постоянного тока, содержащих катушки индуктивности» «Физика Приложение к газете «Первое сентября»», 9/00 г, стр 4-9 К статье добавлены полные

ЗАДАНИЯ, РЕШЕНИЯ И КРИТЕРИИ ОЦЕНКИ ВТОРОГО ЭТАПА ОЛИМПИАДЫ ПО ЭЛЕКТРОНИКЕ ДЛЯ ШКОЛЬНИКОВ КЛАСС.. При замыкании батареи элементов на сопротивление 9 Ом в цепи течет ток А. Какую максимальную полезную мощность

МИНИСТЕРСТВО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКОГО КРАЯ ГОУ СПО "Минераловодский колледж железнодорожного транспорта" С.А. Иванская ЭЛЕКТРОТЕХНИКА Методические рекомендации по освоению теоретического материала и

ЗАДАЧИ С4 Тема: «Электродинамика» Полное решение задачи должно включать законы и формулы, применение которых необходимо и достаточно для решения, а также математические преобразования, расчеты с численным

) На рисунке показано расположение трёх неподвижных точечных электрических зарядов q, q и 3q. Результирующая кулоновская сила, действующая на заряд 3q, q q 3q r r) направлена вправо) направлена влево

Электричество и магнетизм Электростатика Электростатика - это раздел электродинамики в котором изучаются свойства и взаимодействия неподвижных электрически заряженных тел. При решении задач на электростатику

Нурушева Марина Борисовна старший преподаватель кафедры физики 023 НИЯУ МИФИ Электрический ток Электрический ток это направленное (упорядоченное) движение заряженных частиц. Условия существования электрического

Постоянный электрический ток. Сила тока Постоянный электрический ток. Напряжение Закон Ома для участка цепи Электрическое сопротивление. Удельное сопротивление вещества Электродвижущая сила. Внутреннее

Минимум по физике для учащихся 10-х классов за 2 полугодие. Учитель физики - Турова Мария Васильевна e-mail: [email protected] Список литературы: 1. Учебник физики 10 класс. Авторы: Г.Я.Мякишев, Б.Б.

ЗАДАЧИ С1 Темы: все разделы общей физики от «Механики» до «Квантовой физики» В задачах С1 следует записать развернутый ответ, поясняющий физические процессы, описанные в задаче, и ход ваших рассуждений.

Олимпиада «Курчатов» 016 17 учебный год Заключительный этап 11 класс Задача 1 (5 баллов) Небольшая шайба массой m скатывается с вершины гладкой горки массой M и высотой H. Горка находится на гладкой поверхности.

Колебания. Лекция 3 Генератор переменного тока Для пояснения принципа действия генератора переменного тока рассмотрим сначала, что происходит при вращении плоского витка провода в однородном магнитном

Loading...Loading...