Теорема остроградского гаусса для вектора электрической индукции. IV.Вектор электростатической индукции.Поток индукции. Поле непрерывно распределённых зарядов

Основная прикладная задача электростатики – расчет электрических полей, создаваемых в различных приборах и аппаратах. В общем виде эта задача решается с помощью закона Кулона и принципа суперпозиции. Однако эта задача очень усложняется при рассмотрении большого числа точечных или пространственно распределенных зарядов. Еще большие трудности возникают при наличии в пространстве диэлектриков или проводников, когда под действием внешнего поля Е 0 происходит перераспределение микроскопических зарядов, создающих свое дополнительное поле Е. Поэтому для практического решения этих задач используют вспомогательные методы и приемы, использующие сложный математический аппарат. Мы рассмотрим самый простой метод, основанный на применении теоремы Остроградского – Гаусса. Чтобы сформулировать эту теорему введем несколько новых понятий:

А)плотность заряда

Если заряженное тело велико, то нужно знать распределение зарядов внутри тела.

Объемная плотность заряда – измеряется зарядом единицы объема:

Поверхностная плотность заряда – измеряется зарядом единицы поверхности тела (когда заряд распределяется по поверхности):

Линейная плотность заряда (распределение заряда вдоль проводника):

б) вектор электростатической индукции

Вектором электростатической индукции (вектором электрического смещения) называется векторная величина, характеризующая электрическое поле.

Вектор равен произведению векторана абсолютную диэлектрическую проницаемость среды в данной точке:

Проверим размерность D в системе единиц СИ:

, т.к.
,

то размерности D и Е не совпадают, а также различны и их численные значения.

Из определения следует, что для поля вектораимеет место тот же принцип суперпозиции, как и для поля:

Поле графически изображается линиями индукции, точно так же как и поле . Линии индукции проводятся так, что касательная в каждой точке совпадает с направлением , а число линий равно численному значениюD в данном месте.

Чтобы понять смысл введения рассмотрим пример.

ε> 1

на границе полости с диэлектриком концентрируются связанные отрицательные заряды и поля уменьшается враз и скачком уменьшается густота.

Для этого же случая:D = Eεε 0

, тогда: линииидут непрерывно. Линииначинаются на свободных зарядах (уна любых – связанных или свободных), и на границе диэлектрика их густота остается неизменной.

Таким образом – непрерывность линий индукции значительно облегчает вычисление , а, зная связьсможно найти вектор.

в) поток вектора электростатической индукции

Рассмотрим в электрическом поле поверхность S и выберем направление нормали

1. Если поле однородно, то число силовых линий через поверхность S:

2. Если поле неоднородно, то поверхность разбивают на бесконечно малые элементы dS, которые считают плоскими и поле возле них однородным. Поэтому поток через элемент поверхности равен: dN = D n dS,

а полный поток через любую поверхность:

(6)

Поток индукции N – величина скалярная; в зависимости от  может быть > 0 или < 0, или = 0.

Когда зарядов много, при расчётах полей возникают некоторые трудности.

Преодолеть их помогает теорема Гаусса. Суть теоремы Гаусса сводится к следующему: если произвольное количество зарядов мысленно окружить замкнутой поверхностью S, то поток напряжённости электрического поля через элементарную площадку dS можно записать как dФ = Есоsα۰dS где α - угол между нормалью к плоскости и вектором напряжённости . (рис.12.7)

Полный же поток через всю поверхность будет равен сумме потоков от всех зарядов, произвольным образом распределённых внутри её и пропорционально величине этого заряда

(12.9)

Определим поток вектора напряжённости сквозь сферическую поверхность радиуса r, в центре которой расположен точечный заряд +q (рис.12.8). Линии напряжённости перпендикулярны поверхности сферы, α =0, следовательно соsα = 1. Тогда

Если поле образовано системой зарядов, то

Теорема Гаусса: поток вектора напряжённости электростатического поля в вакууме сквозь любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, делённой на электрическую постоянную.

(12.10)

Если внутри сферы зарядов нет, то Ф = 0.

Теорема Гаусса позволяет сравнительно просто рассчитать электрические поля при симметрично распределённых зарядов.

Введём понятие о плотности распределенных зарядов.

    Линейная плотность обозначается τ и характеризует заряд q, приходящийся на единицу длины ℓ. В общем виде может быть рассчитана по формуле

(12.11)

При равномерном распределении зарядов линейная плотность равна

    Поверхностная плотность обозначается σ и характеризует заряд q, приходящийся на единицу площади S. В общем виде определяется по формуле

(12.12)

При равномерном распределении зарядов по поверхности поверхностная плотность равна

    Объёмная плотность обозначается ρ, характеризует заряд q, приходящийся на единицу объёма V. В общем виде определяется по формуле

(12.13)

При равномерном распределении зарядов она равна
.

Так как заряд q располагается на сфере равномерно, то

σ = const. Применим теорему Гаусса. Проведём сферу радиусом через точку А. Поток вектора напряжённости рис.12.9 сквозь сферическую поверхность радиуса равен соsα = 1, так как α = 0. По теореме Гаусса,
.

или

(12.14)

Из выражения (12.14) следует, что напряжённость поля вне заряженной сферы такая же, как напряжённость поля точечного заряда, помещённого в центре сферы. На поверхности сферы, т.е. r 1 = r 0 , напряжённость
.

Внутри сферы r 1 < r 0 (рис.12.9) напряжённость Е = 0, так как сфера радиусом r 2 внутри никаких зарядов не содержит и, по теореме Гаусса, поток вектора сквозь такую сферу равен нулю.

Цилиндр радиусом r 0 равномерно заряжен с поверхностной плотностью σ (рис.12.10). Определим напряжённость поля в произвольно выбранной точке А. Проведём через точку А воображаемую цилиндрическую поверхность радиусом R и длиной ℓ. Вследствие симметрии поток будет выходить только через боковые поверхности цилиндра, так как заряды на цилиндре радиуса r 0 распределены по его поверхности равномерно, т.е. линии напряжённости будут радиальными прямыми, перпендикулярными боковым поверхностям обоих цилиндров. Так как поток через основание цилиндров равен нулю (cos α = 0), а боковая поверхность цилиндра перпендикулярна силовым линиям (cos α = 1), то

или

(12.15)

Выразим величину Е через σ - поверхностную плотность. По определению,

следовательно,

Подставим значение q в формулу (12.15)

(12.16)

По определению линейной плотности,
, откуда
; подставляем это выражение в формулу (12.16):

(12.17)

т.е. напряжённость поля, создаваемого бесконечно длинным заряженным цилиндром, пропорциональна линейной плотности заряда и обратно пропорциональна расстоянию.

      Напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью

Определим напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью в точке А. Пусть поверхностная плотность заряда плоскости равна σ. В качестве замкнутой поверхности удобно выбрать цилиндр, ось которого перпендикулярна плоскости, а правое основание содержит точку А. Плоскость делит цилиндр пополам. Очевидно, что силовые линии перпендикулярны плоскости и параллельны боковой поверхности цилиндра, поэтому весь поток проходит только через основания цилиндра. На обоих основаниях напряжённость поля одинакова, т.к. точки А и В симметричны относительно плоскости. Тогда поток, через основания цилиндра равен

Согласно теореме Гаусса,

Так как
, то
, откуда

(12.18)

Таким образом, напряжённость поля бесконечной заряженной плоскости пропорциональна поверхностной плотности заряда и не зависит от расстояния до плоскости. Следовательно, поле плоскости является однородным.

      Напряжённость поля, создаваемого двумя разноименно равномерно заряженными параллельными плоскостями

Результирующее поле, создаваемое двумя плоскостями, определяется по принципу суперпозиции полей:
(рис.12.12). Поле, создаваемое каждой плоскостью, является однородным, напряжённости этих полей равны по модулю, но противоположны по направлению:
. По принципу суперпозиции напряжённость суммарного поля вне плоскости равна нулю:

Между плоскостями напряжённости полей имеют одинаковые направления, поэтому результирующая напряжённость равна

Таким образом, поле между двумя разноименно равномерно заряженными плоскостями однородно и его напряжённость в два раза больше, чем напряжённость поля, создаваемого одной плоскостью. Слева и справа от плоскостей поле отсутствует. Такой же вид имеет и поле конечных плоскостей, искажение появляется только вблизи их границ. С помощью полученной формулы можно рассчитать поле между обкладками плоского конденсатора.

Закон взаимодействия электрических зарядов - закон Кулона - можно сформулировать иначе, в виде так называемой теоремы Гаусса. Теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Доказательство основывается на обратной пропорциональности силы взаимодействия двух точечных зарядов квадрату расстояния между ними. Поэтому теорема Гаусса применима к любому физическому полю, где действует закон обратных квадратов и принцип суперпозиции, например к гравитационному полю.

Рис. 9. Линии напряженности электрического поля точечного заряда, пересекающие замкнутую поверхность X

Для того чтобы сформулировать теорему Гаусса, вернемся к картине силовых линий электрического поля неподвижного точечного заряда. Силовые линии уединенного точечного заряда представляют собой симметрично расположенные радиальные прямые (рис. 7). Можно провести любое число таких линий. Обозначим полное их число через Тогда густота силовых линий на расстоянии от заряда, т. е. число линий, пересекающих единицу поверхности сферы радиуса равна Сравнивая это соотношение с выражением для напряженности поля точечного заряда (4), видим, что густота линий пропорциональна напряженности поля. Мы можем сделать эти величины численно равными, надлежащим образом выбрав полное число силовых линий N:

Таким образом, поверхность сферы любого радиуса, охватывающей точечный заряд пересекает одно и то же число силовых линий. Это значит, что силовые линии непрерывны: в промежутке между любыми двумя концентрическими сферами разных радиусов ни одна из линий не обрывается и не добавляется ни одной новой. Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает любую замкнутую поверхность (рис. 9), охватывающую заряд

Силовые линии имеют направление. В случае положительного заряда они выходят наружу из окружающей заряд замкнутой поверхности, как показано на рис. 9. В случае отрицательного заряда они входят внутрь поверхности. Если число выходящих линий считать положительным, а входящих - отрицательным, то в формуле (8) можно опустить знак модуля у заряда и записать ее в виде

Поток напряженности. Введем теперь понятие потока вектора напряженности поля через поверхность. Произвольное поле можно мысленно разбить на малые области, в которых напряженность меняется по модулю и направлению столь мало, что в пределах этой области поле можно считать однородным. В каждой такой области силовые линии представляют собой параллельные прямые и имеют постоянную густоту.

Рис. 10. К определению потока вектора напряженности поля через площадку

Рассмотрим, какое число силовых линий пронизывает малую площадку направление нормали к которой образует угол а с направлением линий напряженности (рис. 10). Пусть - проекция на плоскость, перпендикулярную силовым линиям. Так как число линий, пересекающих одинаково, а густота линий, согласно принятому условию, равна модулю напряженности поля Е, то

Величина а представляет собой проекцию вектора Е на направление нормали к площадке

Поэтому число силовых линий пересекающих площадку равно

Произведение носит название потока напряженности поля через поверхность Формула (10) показывает, что поток вектора Е через поверхность равен числу силовых линий, пересекающих эту поверхность. Отметим, что поток вектора напряженности, как и число проходящих через поверхность силовых линий, есть скаляр.

Рис. 11. Поток вектора напряженности Е через площадку

Зависимость потока от ориентации площадки относительно силовых линий иллюстрируется рис.

Поток напряженности поля через произвольную поверхность представляет собой сумму потоков через элементарные площадки, на которые можно разбить эту поверхность. В силу соотношений (9) и (10) можно утверждать, что поток напряженности поля точечного заряда через любую охватывающую заряд замкнутую поверхность 2 (см. рис. 9), как число выходящих из этой поверхности силовых линий равен При этом вектор нормали к элементарным площадкам замкнутой поверхности следует направлять наружу. Если заряд внутри поверхности отрицателен, то силовые линии входят внутрь этой поверхности и связанный с зарядом поток вектора напряженности поля также отрицателен.

Если внутри замкнутой поверхности находится несколько зарядов, то в соответствии с принципом суперпозиции будут складываться потоки напряженностей их полей. Полный поток будет равен где под следует понимать алгебраическую сумму всех зарядов, находящихся внутри поверхности.

Если внутри замкнутой поверхности электрических зарядов нет или их алгебраическая сумма равна нулю, то полный поток напряженности поля через эту поверхность равен нулю: сколько силовых линий входит в объем, ограниченный поверхностью, столько же и выходит наружу.

Теперь можно окончательно сформулировать теорему Гаусса: поток вектора напряженности электрического поля Е в вакууме через любую замкнутую поверхность пропорционален полному заряду находящемуся внутри этой поверхности. Математически теорема Гаусса выражается той же формулой (9), где под понимается алгебраическая сумма зарядов. В абсолютной электростатической

системе единиц СГСЭ коэффициент и теорема Гаусса записывается в виде

В СИ и поток напряженности через замкнутую поверхность выражается формулой

Теорема Гаусса широко используется в электростатике. В некоторых случаях с ее помощью легко рассчитываются поля, создаваемые симметрично расположенными зарядами.

Поля симметричных источников. Применим теорему Гаусса для расчета напряженности электрического поля равномерно заряженного по поверхности шара радиуса . Будем для определенности считать его заряд положительным. Распределение зарядов, создающих поле, обладает сферической симметрией. Поэтому такой же симметрией обладает и поле. Силовые линии такого поля направлены по радиусам, а модуль напряженности одинаков во всех точках, равноудаленных от центра шара.

Для того чтобы найти напряженность поля на расстоянии от центра шара, проведем мысленно концентрическую с шаром сферическую поверхность радиуса Поскольку во всех точках этой сферы напряженность поля направлена перпендикулярно ее поверхности и одинакова по модулю, то поток напряженности просто равен произведению напряженности поля на площадь поверхности сферы:

Но эту величину можно выразить и с помощью теоремы Гаусса. Если нас интересует поле вне шара, т. е. при то, например, в СИ и, сравнивая с (13), находим

В системе единиц СГСЭ, очевидно,

Таким образом, снаружи шара напряженность поля такая же, как у поля точечного заряда помещенного в центр шара. Если же интересоваться полем внутри шара, т. е. при то так как весь распределенный по поверхности шара заряд находится вне мысленно проведенной нами сферы. Поэтому поле внутри шара отсутствует:

Аналогично с помощью теоремы Гаусса можно рассчитать электростатическое поле, создаваемое бесконечной заряженной

плоскостью с плотностью постоянной во всех точках плоскости. По соображениям симметрии можно считать, что силовые линии перпендикулярны плоскости, направлены от нее в обе стороны и имеют всюду одинаковую густоту. Действительно, если бы густота силовых линий в разных точках была различной, то перемещение заряженной плоскости вдоль самой себя приводило бы к изменению поля в этих точках, что противоречит симметрии системы - такой сдвиг не должен изменять поле. Другими словами, поле бесконечной равномерно заряженной плоскости является однородным.

В качестве замкнутой поверхности для применения теоремы Гаусса выберем поверхность цилиндра, построенного следующим образом: образующая цилиндра параллельна силовым линиям, а основания имеют площади параллельны заряженной плоскости и лежат по разные стороны от нее (рис. 12). Поток напряженности поля через боковую поверхность равен нулю, поэтому полный поток через замкнутую поверхность равен сумме потоков через основания цилиндра:

Рис. 12. К вычислению напряженности поля равномерно заряженной плоскости

По теореме Гаусса этот же поток определяется зарядом той части плоскости, которая лежит внутри цилиндра, и в СИ равен Сравнивая эти выражения для потока, находим

В системе СГСЭ напряженность поля равномерно заряженной бесконечной плоскости дается формулой

Для равномерно заряженной пластины конечных размеров полученные выражения приближенно справедливы в области, находящейся достаточно далеко от краев пластины и не слишком далеко от ее поверхности. Вблизи краев пластины поле уже не будет однородным и его силовые линии искривляются. На очень больших по сравнению с размерами пластины расстояниях поле убывает с расстоянием так же, как поле точечного заряда.

В качестве других примеров полей, создаваемых симметрично распределенными источниками, можно привести поле равномерно заряженной по длине бесконечной прямолинейной нити, поле равномерно заряженного бесконечного кругового цилиндра, поле шара,

равномерно заряженного по объему, и т. п. Теорема Гаусса позволяет во всех этих случаях легко рассчитывать напряженность поля.

Теорема Гаусса дает связь между полем и его источниками, в некотором смысле обратную той, что дает закон Кулона, который позволяет определить электрическое поле по заданным зарядам. С помощью теоремы Гаусса можно определить суммарный заряд в любой области пространства, в которой известно распределение электрического поля.

В чем различие концепций дальнодействия и близкодействия при описании взаимодействия электрических зарядов? В какой мере эти концепции можно применить к гравитационному взаимодействию?

Что такое напряженность электрического поля? Что имеют в виду, когда ее называют силовой характеристикой электрического поля?

Каким образом по картине силовых линий можно судить о направлении и модуле напряженности поля в некоторой точке?

Могут ли силовые линии электрического поля пересекаться? Аргументируйте свой ответ.

Нарисуйте качественную картину силовых линий электростатического поля двух зарядов таких, что .

Поток напряженности электрического поля через замкнутую поверхность выражается разными формулами (11) и (12) в системах единиц ГСЭ и в СИ. Как это увязать с геометрическим смыслом потока, определяемого числом силовых линйй, пересекающих поверхность?

Как использовать теорему Гаусса для нахождения напряженности электрического поля при симметричном распределении создающих его зарядов?

Как применить формулы (14) и (15) к вычислению напряженности поля шара с отрицательным зарядом?

Теорема Гаусса и геометрия физического пространства. Посмотрим на доказательство теоремы Гаусса с несколько иной точки зрения. Вернемся к формуле (7), из которой был сделан вывод о том, что через любую окружающую заряд сферическую поверхность проходит одно и то же число силовых линий. Этот вывод связан с тем, что происходит сокращение в знаменателях обеих частей равенства.

В правой части возникло из-за того, что сила взаимодействия зарядов, описываемая законом Кулона, обратно пропорциональна квадрату расстояния между зарядами. В левой части появление связано с геометрией: площадь поверхности сферы пропорциональна квадрату ее радиуса.

Пропорциональность площади поверхности квадрату линейных размеров - это отличительная черта евклидовой геометрии в трехмерном пространстве. Действительно, пропорциональность площадей именно квадратам линейных размеров, а не какой-либо иной целой степени, характерно для пространства

трех измерений. То, что этот показатель степени равен точно двум, а не отличается от двойки пусть даже на ничтожно малую величину, свидетельствует о неискривленности этого трехмерного пространства, т. е. о том, что его геометрия именно евклидова.

Таким образом, теорема Гаусса - это проявление свойств физического пространства в фундаментальном законе взаимодействия электрических зарядов.

Идея о тесной связи фундаментальных законов физики со свойствами пространства высказывалась многими выдающимися умами еще задолго до установления самих этих законов. Так, И. Кант за три десятилетия до открытия закона Кулона писал о свойствах пространства: «Трехмерность происходит, по-видимому, оттого, что субстанции в существующем мире действуют одна на другую таким образом, что сила действия обратно пропорциональна квадрату расстояния».

Закон Кулона и теорема Гаусса фактически представляют один и тот же закон природы, выраженный в различных формах. Закон Кулона отражает концепцию дальнодействия, в то время как теорема Гаусса исходит из представления о силовом поле, заполняющем пространство, т. е. из концепции близкодействия. В электростатике источником силового поля является заряд, и связанная с источником характеристика поля - поток напряженности - не может измениться в пустом пространстве, где нет других зарядов. Поскольку поток можно наглядно представлять себе как совокупность силовых линий поля, то неизменность потока проявляется в непрерывности этих линий.

Теорема Гаусса, основанная на обратной пропорциональности взаимодействия квадрату расстояния и на принципе суперпозиции (аддитивности взаимодействия), применима к любому физическому полю, в котором действует закон обратных квадратов. В частности, она справедлива и для гравитационного поля. Ясно, что это не просто случайное совпадение, а отражение того, что и электрическое, и гравитационное взаимодействия разыгрываются в трехмерном евклидовом физическом пространстве.

На какой особенности закона взаимодействия электрических зарядов основана теорема Гаусса?

Докажите, основываясь на теореме Гаусса, что напряженность электрического поля точечного заряда обратно пропорциональна квадрату расстояния. Какие свойства симметрии пространства используются в этом доказательстве?

Каким образом геометрия физического пространства отражается в законе Кулона и теореме Гаусса? Какая особенность этих законов свидетельствует об евклидовом характере геометрии и трехмерности физического пространства?


Рассмотрим, как меняется значение вектора Е на границе раздела двух сред, например, воздуха (ε 1) и воды (ε = 81). На­пряженность поля в воде уменьшается скачком в 81 раз. Такое по­ведение вектора Е создает определенные неудобства при расчете полей в различных средах. Чтобы избежать этого неудобства вводят новый вектор D – вектор индукции или электрического смещения поля. Связь векторов D и Е имеет вид

D = ε ε 0 Е .

Очевидно, для поля точечного заряда электрическое смещение будет равно

Нетрудно увидеть, что электрическое смещение измеряется в Кл/м 2 , не зависит от свойств и графически изображается линиями, анало­гичными линиям напряженности.

Направление силовых линий поля характеризует направле­ние поля в пространстве (силовые линии, конечно, не существуют, их вводят для удобства иллюстрации) или направление вектора на­пряженности поля. С помощью линий напряженности можно характеризовать не только направление, но и величину напряженно­сти поля. Для этого условились прово­дить их с определенной густотой, так, чтобы число линий напряженности, про­низывающих единицу поверхности, пер­пендикулярной линиям напряженности, было пропорционально модулю вектора Е (рис. 78). Тогда число линий, пронизываю­щих элементарную площадку dS, нормаль к которой n образует угол α с вектором Е , равно E dScos α = E n dS,

где E n - составляющая вектора Е по направлению нормали n . Величину dФ Е = E n dS = E dS называют потоком вектора напряженности че­рез площадку dS (dS = dS·n ).

Для произвольной замкнутой поверхности S поток вектора Е через эту поверхность равен

Аналогичное выражение имеет поток вектора электрического сме­щения Ф D

.

Теорема Остроградского-Гаусса

Эта теорема позволяет определить поток векторов Е и D от любого количества зарядов. Возьмем точечный заряд Q и определим поток вектора Е че­рез шаровую поверхность радиуса r , в центре которой он располо­жен.

Для шаровой поверхности α = 0, cos α = 1, E n = E, S = 4 πr 2 и

Ф E = E · 4 πr 2 .

Подставляя выражение для Е получим

Таким образом, из каждого точечного заряда выходит поток Ф Е вектора Е равный Q/ ε 0 . Обобщая этот вывод на общий случай про­извольного числа точечных зарядов дают формулировку теоремы: полный поток вектора Е через замкнутую поверхность про­извольной формы численно равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхно­сти, поделенной на ε 0 , т.е.

Для потока вектора электрического смещения D можно получить аналогичную формулу

поток вектора индукции через замкнутую поверхность равен алгебраической сумме электрических зарядов, охватываемых этой поверхностью.

Если взять замкнутую поверхность, не охватывающую заряд, то каждая линия Е и D будут пересекать эту поверхность дважды – на входе и выходе, поэтому суммарный поток оказывается равным нулю. Здесь необходимо учитывать алгебраическую сумму линий, входящих и выходящих.

Применение теоремы Остроградского-Гаусса для расчета элек­трических полей, создаваемых плоскостями, сферой и цилин­дром

    Сферическая поверхность радиуса R несет на себе заряд Q, равномерно распределенный по поверхности с поверхностной плотностью σ

Возьмем точку А вне сферы на расстоянии r от центра и проведем мысленно сферу радиуса r симметричную заряженной (рис. 79). Ее площадь S = 4 πr 2 . Поток вектора Е будет равен

По теореме Остроградского-Гаусса
, следовательно,
учитывая, чтоQ = σ·4 πr 2 , получим

Для точек, находящихся на поверхности сферы (R = r)

Для точек, находящихся внутри полой сферы (внутри сферы нет за­ряда), Е = 0.

2 . Полая цилиндрическая поверхность радиусом R и длиной l заряжена с постоянной поверхностной плотностью заряда
(Рис. 80). Проведем коаксиальную цилиндрическую поверхность радиусаr > R.

Поток вектора Е через эту поверхность

По теореме Гаусса

Приравнивая правые части приведенных равенств, получим

.

Если задана линейная плотность заряда цилиндра (или тонкой нити)
то

3. Поле бесконечных плоскостей с поверхностной плотно­стью заряда σ (рис. 81).

Рассмотрим поле, создаваемое бесконечной плоскостью. Из сооб­ражений симметрии вытекает, что напряженность в любой точке поля имеет направление, перпендикулярное к плоскости.

В симметричных точках Е будет одинакова по величине и противоположна по направлению.

Построим мысленно поверхность цилиндра с основанием ΔS. Тогда через каждое из оснований цилиндра будет выходить поток

Ф Е = Е ΔS, а суммарный поток через цилиндрическую поверхность будет равен Ф Е = 2Е ΔS.

Внутри поверхности заключен заряд Q = σ · ΔS. Согласно теореме Гаусса должно выполняться

откуда

Полученный результат не зависит от высоты выбранного цилиндра. Таким образом напряжённость поля Е на любых расстояниях одинакова по величине.

Для двух разноименно заряженных плоскостей с одинаковой по­верхностной плотностью заряда σ по принципу суперпозиции вне про­странства между плоскостями напряжённость поля равна нулю Е = 0, а в пространстве между плос­костями
(рис. 82а). В случае, если плоскости заряжены одноименными зарядами с одинаковой поверхностной плотностью зарядов, наблюдается об­ратная картина (рис. 82б). В пространстве между плоскостями Е=0, а в пространстве за пределами плоскостей
.

Наиболее сложным оказывается изучение электрических явлений в неоднородной электрической среде. В такой среде ε имеет различные значения, изменяясь на границе диэлектриков скачкообразно. Предположим, что мы определяем напряжённость поля на границе раздела двух сред: ε 1 =1 (вакуум или воздух) и ε 2 =3 (жидкость – масло). На границе раздела при переходе из вакуума в диэлектрик напряжённость поля уменьшается в три раза, во столько же раз уменьшается поток вектора напряжённости (рис.12.25, а). Скачкообразное изменение вектора напряжённости электростатического поля на границе раздела двух сред создаёт определённые трудности при расчёте полей. Что касается теоремы Гаусса, то в этих условиях она вообще теряет смысл.

Так как поляризуемость и напряжённость разнородных диэлектриков различна, различным будет и число силовых линий в каждом диэлектрике. Это затруднение можно устранить, введя новую физическую характеристику поля электрическую индукцию D (или вектор электрического смещения ).

Согласно формуле

ε 1 Е 1 = ε 2 Е 2 =Е 0 =const

Умножая все части этих равенств на электрическую постоянную ε 0 получим

ε 0 ε 1 Е 1 = ε 0 ε 2 Е 2 =ε 0 Е 0 =const

Введём обозначение ε 0 εЕ=D тогда предпоследнее соотношение примет вид

D 1 = D 2 =D 0 =const

Вектор D, равный произведению напряжённости электрического поля в диэлектрике на его абсолютную диэлектрическую проницаемость, называют вектором электрического смещения

(12.45)

    Единица электрического смещения – кулон на квадратный метр (Кл/м 2).

Электрическое смещение – векторная величина, её можно выразить ещё как

D = εε 0 E =(1+χ)ε 0 E = ε 0 E + χε 0 E = ε 0 E+P

(12.46)

В отличие от напряжённости Е электрическое смещение D постоянно во всех диэлектриках (рис.12.25, б). Поэтому электрическое поле в неоднородной диэлектрической среде удобно характеризовать не напряжённостью Е, а вектором смещения D . Вектором D описывается электростатическое поле, создаваемое свободными зарядами (т.е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика, так как связанные заряды, возникающие в диэлектрики, могут вызвать, перераспределение свободных зарядов создающих поле.

Поле вектора графически изображается линиями электрического смещения точно так же, как полеизображается силовыми линиями.

Линия электрического смещения – это линии, касательные к которым в каждой точке совпадают по направлению с вектором электрического смещения.

Линии вектора Е могут начинаться и заканчиваться на любых зарядах – свободных и связанных, в то время как линии вектора D - только на свободных зарядах. Линии вектора D в отличие от линий напряжённости непрерывны.

Так как вектор электрического смещения не испытывает разрыва на границе раздела двух сред, то все линии индукции, исходящие из зарядов, окружённых некоторой замкнутой поверхностью, пронижут её. Поэтому для вектора электрического смещения теорема Гаусса полностью сохраняет свой смысл и для неоднородной диэлектрической среды.

Теорема Гаусса для электростатического поля в диэлектрике : поток вектора электрического смещения сквозь произвольную замкнутую поверхность равен алгебраической сумме зарядов заключенных внутри этой поверхности.

(12.47)

Loading...Loading...